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Preface

I have written this article as a response to my own question when I was a high
school student, which was: ‘Where can I find a good source to learn more
about mathematics as it is taught at universities?’. And so, this article is
aimed at high school students with the same question and people in general
who want to know what studying mathematics at a university means. So
this can be considered an introduction to mathematics at universities.

Supposed knowledge

The following subjects are almost in every high school curriculum. If you do
not know about the following subjects, you can learn about them on your
own. They are not difficult and easy to learn by the internet. I will refer to
some concepts from these topics in this book.

1. Simple algebra (solving linear equations, solving real quadratic equa-
tions, factorial)

2. Simple number theory (modular arithmetic, even/uneven arguments)

3. Beginner Calculus (differentiation, integration, sum notation, opti-
mization, trigonometry, absolute value)

4. Complex numbers (Euler’s formula, conjugation, complex roots)

5. Triangle inequality for real numbers

6. Simple 3D/2D geometry (reflections, projections)

7. Some sources are:

(a) 3Blue1Brown at YouTube for videos http://www.3blue1brown.
com/

(b) Paul’s Online Math Notes at http://tutorial.math.lamar.edu/

(c) https://en.wikipedia.org/wiki/Portal:Mathematics

(d) https://www.khanacademy.org/math

8. How to Prove It: A Structured Approach, D. J. Velleman, would be a
good alternative to the ‘Proving theorems’ section in this book.

http://www.3blue1brown.com/
http://www.3blue1brown.com/
http://tutorial.math.lamar.edu/
https://en.wikipedia.org/wiki/Portal:Mathematics
https://www.khanacademy.org/math
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Introduction

This book is divided into a first part where I will introduce some basic con-
cepts which will definitely recur in every mathematics course at a university.
This is to provide one with the basic tools. After that there will be some
definitions of some common concepts in areas of mathematics and some the-
orems in these areas. Along the way there will also be exercises to foster
thought about the content of the texts. Next to that, I would like to give
an idea of what this mathematics is about. For mathematics can be divided
into many different subjects which sometimes overlap in a very elegant way.

Furthermore, it is very important, in the first stages of learning advanced
mathematics, to see for yourself the distinction between real formal, formal,
right informal and wrong informal mathematics. Real formal mathematics
is in the language of general mathematical logic, which is a complete subject
on itself, which is also probably quite unreadable for someone who is not
familiar with mathematical logic. Formal means that the real formal is
abbreviated by language (which is most mathematics from the hands of
mathematicians who do not deal with real formal logic as a subject on itself).
Right informal mathematics is when something is discussed in words for
educational purposes or some parts of proofs are left out, which are proven
somewhere else. Wrong informal is when something is stated without prove,
which is not even formally true. This distinction will be discussed in the
first section.

Moreover, considering notation, the emphasized, bold and ‘quoted’ texts
are either new words/definitions or (general) important notions. Also, ‘quoted’
text can be the informal analogy, in words, of something that is being ex-
plained or the introduction of symbols, not necessarily text. I hope it will
be clear in the text.

In addition, there is something to say about the (albeit subjective)
beauty of mathematics. After continuity and some other concepts are clear,
there is the possible division between the continuous and the discrete, and
it is quite remarkable how these can overlap such as in algebraic topology.

Furthermore, this book does not claim to be a complete introduction.
So try to consult other sources and taste other styles of doing mathematics.
In general, I would encourage you to investigate some of the concepts on
the internet or with other sources if they are not immediately clear. In
mathematics there can be many different ways of proving the same theorem,
so it is useful to see other viewpoints. Moreover, if there are any mistakes
in this, which I have tried to minimise of course, do not panic, but think for
yourself. Because that is ultimately what doing mathematics is about: to
learn for yourself to know what formal mathematics is.

Finally, mathematics is not just isolated-cases-problem-solving, it also is
about coming up with new problems/questions in trying to prove a general
result. So you can ask yourself: do I want to be a generaliser and prove
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theorems or do I want to do (long, tedious) calculations? But most of all,
when doing mathematics, you should enjoy it!



Chapter 1

Proving theorems

In the first weeks of studying mathematics at university, you will most likely
come across several exercises in which you need to give a proof of a certain
proposition. Proof theory is a part of the field of mathematics, which studies
the question: “What is a ‘good/allowable’ proof?”. In the beginning of the
20th century, mathematicians established a formal proof theory. Their the-
ory answers the raised question, according to today’s standards. The main
idea is that a proof is a line of reasoning establishing a certain proposition
when it meets some or all ‘proof-rules’ and only ‘axioms’ and the explicitly
mentioned presumptions are taken for granted (to be ’true’).

We have the notations: ‘∧’ means ‘and’, ‘∨’ means ‘(inclusive) or’. Now
officially, these are the real formal symbols for ‘and’ and ‘or’, but they just
represent (formal) functions associated with the idea of ‘and’ and ‘or’ with
two inputs (propositions) and output 0 or 1: two inputs (α, β) 7→ 0 or 1,
depending on the validity of α and β and the used comparing symbol. This
function notation will come back later.

The following ‘truth’ table tells you what the ‘truthness’ is (0 or 1) of
a combination of symbols when they are both true up to when they are
both false etc. Beware that 0 or 1 doesn’t actually have to mean something
semantically1. It is only to make a distinction. This is what separates
mathematics from mere linguistics.

The truth table:

Input Output

α β ∧ ∨ →
0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 1

1Semantically means having to do with the ‘meaning’ of words.

1



2 CHAPTER 1. PROVING THEOREMS

But we can allow semantic discussions to make it (informally) clear:

red is a color ∧ blue is a color = true,

an apple is a pear ∨ you wear red socks = unclear.

Now the first example is (informally) obvious, but the second is (informally)
unclear because if you wear red socks one of both statements is true, but
if you do not wear red socks, clearly the combined ‘or’ statement is also
false. However for ∨ to give true, also both input statements can be true,
therefore it is the inclusive or. Moreover, I write (informally) because you
cannot really easily define what a color is etc. Again mathematics is (trying)
not (to be) philosophy or linguistics.

Sometimes we have a proposition which depends on some variables. We
can write this as φ(x1, x2, ..., xn). Example: x1 × x2 = x3 → x2 = x3 × x4.
Now this does not specify conditions on x1, x2, . . . , xn. For example x2 = 3,
does not ‘mean’ anything formally. We must have, for example,

for all numbers, x, in the set of positive integers: x2 = 3,

which is (informally) a closed-formed proposition, but it is false in its va-
lidity. We will come to this closed-formedness with (formal) quantifiers later.

The following ‘prove-rules’ are essential, and the most common prove-rules2,
which allows you to prove theorems: in the following α and β are ‘proposi-
tions’

1. A simple rule is that if you have (by presumption) α ∧ β, you may
conclude both α and β. Formally: α ∧ β ⇒ α and α ∧ β ⇒ β. Where
‘⇒’ means, ‘I draw the right conclusion from the left’. Of course, this
doesn’t apply to ‘∨’. Now the ‘⇒’ and the ‘→’ are related, but the
one is the informal notion of implies and the second the (real) formal.

2. Another simple one is that if you are given a proposition (by presump-
tion) α, you can always use it. Formally: α⇒ α.

3. If you know that α ‘implies’ β and α is true, then you may conclude β is
true. This is called the ‘modus ponens’. Formally (α∧ (α→ β))⇒ β,
where the brackets (. . . ) are only to group things on the left, separated
from the right.

4. If you assume α is true, and you can somehow derive β out of α, then
you may conclude α implies β. Formally ([α] ⇒ β) ⇒ (α → β), in

2One has the freedom to choose his/her own prove-rules, but the rules might not be
‘allowable’ by real formal logic. Now again ‘real’ formal logic (mathematical logic) is a
subject on its own, however interesting, laying outside the scope of this book.
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which [...] means that what is inside the brackets is an assumption.
Be careful not to just use α as a proposition that is necessarily true.
Now in a so-called theory in mathematical logic

5. If you have to prove α, you can assume that α is not true, and somehow
derive a contradiction. If you find a ‘general’ contradiction which
leads solely from you assumption that α is not true, you may conclude
that α is true. Formally: ([¬α] ⇒ ⊥) ⇒ α, in which ⊥ means a
proposition that is always false. Be careful as to how your assumption
effects the contradiction, this is what I mean with ‘general’: it is a
valid contradiction for all circumstances to be checked, not just in one
example. This method is called ‘Reductio ad absurdum (RAA)’ or
‘proof by contradiction’.

6. And, of course, rewriting a mathematical expression (using the ‘=’
sign) can sometimes be enough to give a proof.

7. Sometimes you have to prove unicity of x in a proposition φ(x), which
depends on x. A common way to proving this is assuming there is a
y for which the proposition also holds, and deducing that x = y by
contradiction.

8. A different sort of technique to prove statements is ‘induction’. This
technique deals with expressions that take a natural number as input.
It is a technique that proves that a proposition is true for all natural
numbers. Induction starts with the assertion that an proposition, φ
is true for the base case. Formally: φ(0). After this, the assumption
φ(n) should imply φ(n+ 1). Examples will follow.

Something else you will come across often in mathematics is proving a ‘if
and only if’ expression. Real formal notation: α ↔ β. This is nothing
else as the expression α → β ∧ β → α. So if you have to prove an ‘if and
only if’ relation, you need to prove both ways. Easiest is to prove both
ways separately. Writers use the symbol ⇐⇒ to imply an ‘if and only if’
relation.

Some of the following exercises belong to this section, but can be done
later, when things become more clear.
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Exercises

1. Very Important Think about this statement: α→ β ⇐⇒ ¬β → ¬α
in words (informally). Try proving it formally using the assumption
[¬β] and [α] and using the expression α→ β as a true one (you always
need to assume something in front of a ‘→’, do you see that?). Can
you use RAA to change α to something desired? This is known as the
‘contraposition’. Something very useful about this, is that if you have
to prove α → β, you can also just prove ¬β → ¬α. Add it to your
proving-techniques list!

2. The classic example for induction is φ(n) =
(
1 + 2 + 3 + · · ·+ n =

1
2n(n + 1)

)
. First check the base case φ(1). Then by assuming φ(n),

rewrite 1 + 2 + · · · + n + 1, by using φ(n) and simplify the right side
to the right side of φ(n+ 1).

3. Prove by induction that for all positive integers n > 3 that 3n > n3.

4. Prove by induction that the number of diagonals of a regular polygon
with n sides is 1

2n(n− 3). Try to think of exemplary pictures of some
small regular polygons first.

5. Prove by induction that the number of minimal moves to solve the
Tower of Hanoi (search for it on the internet) for n disks is 2n − 1.



Chapter 2

Notation and definitions

2.1 Quantifiers

Now, quantifiers are formal objects, but again are (informal) analogies of
the following:

1. ∃x∈aβ means ‘there exists a x in a certain set a such that β is true/valid’.
(The x ∈ a in subscript is only to make a clear distinction between
x ∈ a and β.)

2. ∀x∈aβ means ‘for all x in a certain set a, β is true/valid’.

Sometimes ∃x∈aβ is rather subtle, because it also means something like: “if
there is a x such that β, then, ... holds”.

Now, a closed-formed proposition φ, depending on x1, x2, . . . , xn (so
φ(x1, x2, . . . , xn)), is a proposition in which all variables are restricted by
exactly either one of these quantifiers. So in our example in section ‘Proving
theorems’, we had ∀x∈N. This will become more clear in the following
section.

2.2 Sets

Sets are collections of items, informally. In fact, it can be said, jokingly, all
mathematics is applied set theory (combined with the human capability to
grasp certain concepts of course). Set theory was formally established at the
same time as proof theory. The ‘set’ of axioms which tames the most used
‘forms’ of sets is called Zermelo-Fraenkel (ZF) set theory, which is just a list
of axioms. Some of their axioms are derived from quite simple occurrences
or thought experiments. One of them is ‘Two sets are the same, when they
have the same elements.’, which is actually a very useful axioms. Another
axiom prevents instances such as the ‘Russell’s paradox’ (Google it I’d say!)
Other axioms are used to define some notation and operations of set theory,

5
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such as (in the following a, b and c are sets, x are elements, beware: elements
can also be sets!):

1. A set in set-notation has two parts: the part left of the ‘|’ and the part
right of it: {... | ...} where the brackets ‘{’ are to ‘close the set off’.
The part left is to define in what set the elements of the set at hand
are in (because this is required because of an axiom, for really big sets
this is the ‘Von Neumann Universe’) and this is often left out. The
part right is to give a condition for an element which it should obey.
Otherwise, sets are denoted as the set with some explicit elements like
this {a, b, c}, {1, 2, 4, 7} or {apple, pear, cow}, this can only be done
when dealing with small finite sets. Sometimes ‘:’ can be used instead
of ‘|’.

2. ∅ or { } is the empty set. It is a set with no elements. It is guaranteed
to exist by an axiom. This set doesn’t have the two parts.

3. Sets in ZF don’t care about double elements, thus {x, x, x} = {x}

4. a ∪ b = c is the union, c, of a and b. c contains all elements of
both a and b. Formally: c = {x | x ∈ a ∨ x ∈ b}. Again here,
formally is not real formal, but is how it is written in a precise way
(and hopefully understandable) using the notation we have come past.
Now x is an element of the ‘Von Neumann Universe’, but this is not
important when doing mathematics which is not always about set
theory on its own. Moreover the notation

⋃
x∈A x means the union

of all x ∈ A, example: Suppose B = {{a, d}, {c}, {8}, {3, w}}. Then⋃
x∈B x = {a, d, c, 8, 3, w}, much like putting all elements of elements

of B into one set together.

5. a∩b = c is the intersection, c, of a and b. c contains all elements which
are both in a and b (notice the subtlety). Formally:
c = {x | x ∈ a ∧ x ∈ b}. There is a similar notation for

⋂
x∈A x, just

like for the union.

6. a ⊆ b or a ⊂ b, means a is a subset of b, i.e. all elements of a are
contained in b: ∀x∈a x ∈ b. ‘⊆’ means ‘a is equal to b’ or ‘a is a subset
of b’. Because if a = b then still a is subset of b, but not a strict
subset. ‘⊂’ is sometimes interpreted as a ‘strict’ subset, so that a 6= b,
hence, the formalism with this notation is unclear. A means to make
a distinction between strict subset and ⊂ is using ‘(’ for strict and
‘⊆’ for any subset instead.

7. P (a) = c means: the powerset of a is c. Formally: c = {x | x ⊆ a}.
Why is the empty set an element of P (a)? This is the set of all subsets
of a.
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8. a\b = c means: ‘a without its elements which are also in b’. Formally:
c = {x | x ∈ a ∧ x /∈ b}

9. a× b = c is the Cartesian product of a and b, containing all ordered
pairs (ai, bi)

(
6= (bi, ai) in general

)
, with ai ∈ a and bi ∈ b. Formally:

c = {(ai, bi) | ai ∈ a ∧ bi ∈ b}. The formal set notation of one ordered
pair (x, y) is {{x}, {x, y}}. Remember, {x, y} has no order.

10. In dealing with intervals of real numbers, a closed interval is
[a, b] = {x ∈ R | a ≤ x ≤ b} and an open interval
(a, b) = {x ∈ R | a < x < b}.

A very useful technique to prove that two sets are equal, is to prove that
both sets are subsets of each other. Formally: (a ⊂ b) ∧ (b ⊂ a)⇒ a = b

Often used sets are: N, Z, Q and R, which are the sets of natural (pos-
itive) numbers, all whole numbers, rational numbers and the ominous real
numbers respectively. They are also denoted as N, Z, Q and R respectively.
Furthermore, R[x] and Pn(R) are the set of all polynomials and the set of
all polynomials up to a certain degree (degree is highest exponent of a poly-
nomial) respectively, both with coefficients in R. Examples: x2+

√
2 ∈ R[x]

and x4 + 2x3 /∈ P3(R). Generally, if R is a ring we let R[x] denote the set
of all polynomials with coefficients in the ring R. We will pass rings later.

Moreover, a nice construction is the partition. A partition of a set B, is
a set A, for which holds:

1. ∀x∈A x 6= ∅

2.
⋃
x∈A x = B

3. ∀x,y∈A x ∩ y 6= ∅ ⇒ x = y, or equivalently: ∀x,y∈A x 6= y ⇒ x ∩ y = ∅.
This called: x and y are disjoint.

Now, a partition is really analogically a partitioning of all the set’s its ele-
ments into disjoint subsets of the set.
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Exercises

A, B, C and D are any sets.

1. Prove: (A ∪B) ∪ C = A ∪ (B ∪ C)

2. Prove: (A ∩B) ∩ C = A ∩ (B ∩ C)

3. Prove: A ∩B = A ⇐⇒ A ⊆ B

4. Prove: A ∪B = A ⇐⇒ B ⊆ A

5. Prove: A\B = A ⇐⇒ A ∩B = ∅

6. Prove: A\(B ∪ C) = (A\B) ∩ (A\C)

7. Prove: A\(B ∩ C) = (A\B) ∪ (A\C)

8. Prove: P (A) ⊆ P (B) ⇐⇒ A ⊆ B

9. What does R×R resemble visually, thinking about the xy plane?

10. Prove: (A × B) 6= (B × A) in general (which means: not always).
Think about a counterexample.

11. Prove: (A ∩B)× (C ∩D) = (A× C) ∩ (B ×D)

12. If x ∈ A and A\B ⊆ C ∩D, does x /∈ D ⇒ x ∈ B?

13. Given x ∈ C and A ∩ C ⊆ B. Does this imply x /∈ A\B?
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2.3 Relations

The way to formally “match” two elements, which are in a relation with
each other, is easily done via ordered pairs. So if x, y ∈ A then for some
relation, you write xRy or x ∼ y, whenever x has the specified relation with
y. Some examples are x ≤ y ⇐⇒ x ∼ y or x + y = even ⇐⇒ xRy.
Beware to distinguish between the ‘=’ for elements in sets and the ‘=’ in
the relation prescription. There are some types of relations which obey to
certain common sense rules:

1. Equivalence relation ∀x,y,z∈A:

(a) Reflexivity: xRx

(b) Symmetry: xRy ⇒ yRx

(c) Transitivity: xRy ∧ yRz ⇒ xRz

2. Partial order ∀x,y,z∈A:

(a) Reflexivity

(b) Antisymmetry: xRy ∧ yRx⇒ x = y

(c) Transitivity

If we have some equivalence relation we have an equivalence class for each
x ∈ A, which is a set, denoted as ‘[x]’, which contains all elements with
whom x has a relation with. Formally: [x] = {a ∈ A | xRa}. The set of
all equivalence classes together is called the quotient set, formally: A/ ∼
:= {[x] | x ∈ A}, where ‘:=’ means, ‘... is defined as ...’. Equivalence
classes are often used in defining concepts in mathematics. Examples are
the congruence classes, related to modular arithmetic. These congruence
classes can be defined formally using group theory, which will come back
later.

Another example are the equivalence classes induced by so-called homo-
topy in topological spaces, which has something to do with how a space is
punctured by holes. This often referred to as in that a mug is topologi-
cally the same as a donut, because they both have one hole (and can be
continuously deformed into each other).

Moreover, they appear in the concept of orbits in group theory, which is
useful for counting for one thing.
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Exercises

1. Give the quotient set of x+ y = even, with x, y ∈ N.

2. Very Important Given an equivalence relation over the set A, prove
that the quotient set is a partition of A. Reminder: set theory doesn’t
care about double elements.

3. Check that given the set N the relation less than or equal to ‘≤’ over
this set, is a partial order on N.

4. Check that given a set A, the relation subset or equal to ‘⊆’ over P (A),
gives a partial order on P (A).

5. Very Important Check that given a simple finite quotient set of some
relation, such as in the examples/exercises above, you can choose a sin-
gle representative element for every equivalence class in the quotient
set. This is known as the finite Axiom of Choice, which is a contro-
versial element of extended ZF theory when considering infinite sets.
(Again, this is mathematical logic/axiomatic set theory.)

2.3.1 Defining some sets

Now we can actually define N using only sets. This can be made really
formal but I will sketch some ideas here.

Let the symbol 0 := {}. And S(a) the successor function with operation
a 7→ a ∪ {a}. Then 1 = 0 ∪ {0} and 2 = 1 ∪ {1}. Then n = n− 1 ∪ {n− 1}.
This construction is thanks to Von Neumann. Another way is to define the
natural numbers with axioms, such as the Peano axioms. It can be shown
that Von Neumanns constructions satisfies the Peano axioms.

The integers Z can be defined using relations. Let a, b ∈ N. We say
(a, b) ∼ (c, d) ⇐⇒ a + d = b + c, using the definition of addition in
N. Now we can choose one representative for every equivalence class of this
relation on N and call that n or −n. Here you can hold the analogy in
mind that (1, 3) is related to 1 − 3 = −2 and (0, 2) ∼ (1, 3), so let positive
integers n be (n, 0) and negative −n be (0, n), for example. Because the
representative is non-unique.

We can define the rational numbers Q with another equivalence relation.
Let a, b, c, d ∈ Z. We say (a, b) ∼ (c, d) ⇐⇒ a·d = b·c, with multiplication
in Z. Now we can again assign representatives for every equivalence class
and call that some rational number.
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2.4 Functions

Functions, f are ‘objects’ which relate two sets, X and Y , with each other
via a certain rule. Formally: f : X → Y . The ‘→’ has nothing to do
with implications, in the case of their usage in functions. Some features of
functions are:

1. X is the domain of the function f

2. Y is the codomain of the function f

3. Every function ‘maps’ ( 7→) every single element in the domain to one
single element in the codomain. One element in the domain cannot be
mapped to two different elements in the codomain at the same time
for functions.

4. The ‘certain rule’ is a prescription, which ‘says’ what the functions
does with its elements in the domain. “To what element in Y do I,
the function, have to ‘map’ this element in X?”. It is very similar to
giving a computer an algorithm to execute.

Example: f : N → N, thus X = N and Y = N, with prescription:
x 7→ x2. ‘ 7→’ means ‘maps to’. Here clearly x ∈ X, and x2 ∈ Y .
According to our notation so far: f(2) = 4, in this case, right?

5. If a ⊆ X then f(a) is the image of f under a. Notice that f(a) ⊆ Y .
The ‘range’ of f is f(X). Here the subtlety of ∃ comes around, because
the formal notation of the image is:

f(a) = {y ∈ Y | ∃x∈ay = f(x)}.

In words this says something like: “If for some x ∈ a and f(x) = y,
then y ∈ f(a)”. So the set, f(a), loops, as to say, over the images of
all elements in a and adds them to its set. Now f(X) ⊂ Y of course.

6. If b ⊆ Y then f -1(b) is the domain elements in X that map to b under
f .

7. Injectivity means all function outputs are different from each other.
Formally: x1 6= x2 ⇒ f(x1) 6= f(x2) or (the contrapo...) f(x1) =
f(x2) ⇒ x1 = x2. Notice that x1 = x2 ⇒ f(x1) = f(x2) makes not
much sense because of feature 3.

8. Surjectivity means that the function maps ‘onto’ all elements of the
codomain. Formally: ∀y∈Y ∃x∈Xf(x) = y. Notice that surjectivity
doesn’t imply injectivity. If f(X) = Y then f is surjective, right?
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9. Bijectivity means that the function is both injective and surjective.
What does this mean? Notice that every single element in the domain
gets a different output, and every element in the codomain is mapped
onto.

10. h = g ◦ f is the function that takes as input an element of the domain
of f which gives an element in the codomain of f , and if the domain of
g is the codomain of g, this g can give an output of this element. The
mapping is like this (Z is the codomain of g): h : X → Y → Z and
h(x) = g(f(x)). Think about it as g AFTER f . We call this function-
composition. We can check that function-composition is associative,
i.e.: Let f : A→ B, g : B → C, h : C → D then

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Because for some x ∈ A

h ◦ (g ◦ f)(x) = h ◦ (g(f(x)) = h(g(f(x)) = (h ◦ g) ◦ f(x).

11. We define the set of all possible functions from X → Y as Y X . This
is interesting when X and Y are finite. Most of the time in talking
about these sets, if someone writes 3X , they mean for the 3 := {0, 1, 2}.
Example:
Suppose B = {a, b}, then 2B = {f1 := (f1(a) 7→ 0, f1(b) 7→ 0), f2 :=
(f2(a) 7→ 1, f2(b) 7→ 0), f3 := (f3(a) 7→ 0, f3(b) 7→ 1), . . . }. So all
possible mappings between the codomain and the domain are included.

12. A linear mapping f : V → W (just another term for a function) is
such that ∀u,v∈V :

f(u+ v) = f(u) + f(v)

f(cu) = cf(u)

I have still left out the rigorous definition of the ‘+’ and c, because
that will become clear after you have become familiar with groups,
rings and fields.

We say a set A is finite (in the number of its members) if there exists a
bijection f : A → {1, 2, . . . , n} for some n ∈ N. Now the number of its
elements is commonly written as |A| or #A, which would be the number n.

Another interesting mapping is the permutation. If you have a function
σ : X → X, then any bijection σ is also a permutation of X. Example:
X = {1, 2, 3, 4, 5} then some permutation of the ordered quintet (1, 2, 3, 4, 5),
a change of order, could be: (2, 5, 3, 1, 4). This is the same structure as the
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bijection for which σ(1) 7→ 2, σ(2) 7→ 5, σ(3) = 3 etc. I.e. the structure
contains the same information. You can denote a permutation as:

σ =

(
1 2 3 4 5
2 5 3 1 4

)
Or in general:

σ =

(
x1 x2 x3 . . .

σ(x1) σ(x2) σ(x3) . . .

)
Doing σ on some ordered list like a = (1, 4, 3, 6, . . . ) gives a new list:

σ(a) := σ = (σ(1), σ(4), σ(3), σ(6), . . . )

on which you can do a new permutation, which gives you:

σσ(a) := (σ(σ(1)), σ(σ(4)), σ(σ(3)), σ(σ(6)), . . . )

etc. So you can repeat permutations after each other like multiplication.
But why does order matter in contrast to multiplication? Actually, permu-
tative multiplication is the composition of bijective functions.

A very useful proving technique due to bijections is the pigeonhole prin-
ciple: there is no bijection possible between {1, 2, . . . , n} and {1, 2, . . . ,m},
with n < m.

Exercises

1. Prove the pigeonhole principle.

2. Give the formal set notation of f -1(b).

3. Prove that, if some function f : X → Y is bijective, if and only if f -1

is bijective. f -1 is the function that sends all elements in Y to their
element in the domain: f(x) = y ⇒ f−1(y) = x.

4. Show that if the same f : X → Y is bijective, then f ◦ f -1 = idY and
f -1 ◦ f = idX . idA is a ‘identity’ function that sends all elements to
the element itself, so idA : A→ A and ∀a∈AidA(a) = a.

5. Suppose f : A→ B, g : B → C, h : C → D are functions and g ◦ f and
h ◦ g are bijective. Prove that there is a bijection h ◦ f .

6. Prove that the function T : R[x]→ R[x] with prescription: T (f(x)) =
f ′(x) is not injective but is surjective. Where f ′(x) is of course the
(single variable) derivative of f(x).

7. Give a injection (a function that is injective) f : N→ Q.
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8. Search for the ‘pairing function’ on (English) Wikipedia. Using this
we can prove that there is a bijection f : N → Q, which seems quite
remarkable.

9. Give a bijection between all even numbers and N.

10. Is this function bijective?
Let a be any set. f : P (a)→ P (a), with x ∈ P (a), x 7→ a\x

11. Show that if a is any set, then there is a bijection between P (a) and
2a (as in the set of all functions f : a→ {0, 1}).

12. Suppose you have: σ =

(
1 2 3
2 1 3

)
. What is σσ(1, 2, 3)? This means

you have found an identity element for σ. (Similar as with the identity
function an identity element is an element that under operation with
another element gives the original element, it is a ‘neutral’ element, as
to say, we will come back to this in the next chapter.)

13. Check that permutation multiplication is associative.

2.5 Negation of propositions

Now that we have become familiar with notation in quantifiers, we can
address negating a proposition. This is useful if you have to prove A→ B,
but you think it is easier to prove ¬B → ¬A (the contraposition). Formally,
if you have a proposition purely in formal notation the ∀ changes in ∃ and ∃
in ∀. And > changes to ≤, etc. Think about this with a simple proposition,
and negate it. The element inclusion condition in the subscript does not
change. Example:

∀x∈R∃y∈Z xy > 2.

Whose negation is
∃x∈R∀y∈Z xy ≤ 2.

Again, it does not matter whether one is true or not, it is about negating
propositions. Another example:

∀n∈N∃x,y,z∈N xn + yn = zn.

Whose negation is:
∃n∈N∀x,y,z∈N xn + yn 6= zn.



Chapter 3

Topics of interest

3.1 Limits of real sequences

Sequences are important concepts in the foundation of real analysis, which
is the foundations of Calculus, with which you are probably familiar. Se-
quences give rise to the definition of series. Series are important for functions
such as sinx and ex. Series actually define these functions formally. A real
sequence is a simple function: f : N → R, often denoted as (an)∞n=0 or
{an}n∈N for just the elements of the sequence, with f(n) = an = x, with
n ∈ N and x ∈ R. But when are sequences interesting? When they con-
verge to some number! This is the fundamental idea of all of Calculus. But
what is convergence of a sequence? It can’t just be: ‘as n gets big, f(n) is
some number’. There are two very important definitions of convergence of
sequences in R.
First, lets introduce some terminology for sequences:

1. A sequence (an)∞n=0 is said to be decreasing if for all n an+1 ≤ an
holds. Strict decreasing is when an+1 < an holds. There is an analogy
for an increasing sequence.

2. Sequences are actually sets which contain all ‘output’ of the sequence
itself as a subset of R. A sequence (an)∞n=0 is bounded if for all n
|an| ≤M , with M ∈ R.

3. It’s very important to note that ±∞ /∈ R. The algebraic operations
you may use when we use R̄ (R̄ = {−∞} ∪ {R} ∪ {+∞}, this is
‘extended’ R), are for x ∈ R:

(a) x+ (+∞) = +∞ and x− (+∞) = −∞

(b) x(+∞) = +∞ and x(−∞) = −∞

(c) x/(+∞) = x/(−∞) = 0

15
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4. A more general notation in dealing with subsets of R is the supremum
or infimum (The definition can actually apply to all sorts of partially
ordered sets). Definition:
If A ⊂ R and A 6= R, then an upper bound M ∈ R of A is such that:
∀x∈A x ≤ M . A supremum L ∈ R of A is such that for all upper
bounds of A, lets say M , L ≤M . This is denoted as supA = L.
The case for R actually stands on this definition because in Q there
are subsets which do not have a supremum in Q it self. This gave
Dedekinds motivation to define real numbers as later-called Dedekind-
cuts:
Suppose x is a real number, then the Dedekind-cut for this real number
is: x := {q ∈ Q | q < x}.

The first definition of convergence, is convergence towards some limit l ∈ R:

∀ε>0∃n0∈N∀n≥n0 |an − l| < ε.

Shorter notation: an → l or limn→∞ an = l. We use the informal metric
| . . . | : R → R≥0 with x 7→ |x| (| . . . | the absolute value of x), which is
dependent on the set you are working in1. For the real numbers it is the
familiar absolute value, for complex numbers it is z 7→

√
zz̄.

The second one is Cauchy convergence2:

∀ε>0∃n0∈N∀n,m≥n0 |an − am| < ε.

A very important argument in proving things about converging sequences is
the ε/2-argument’. Example: If an → a and bn → b, then an + bn → a+ b.
Proof:
For some n0 |an − a| < ε/2 for all n ≥ n0, because convergence holds for all
ε > 0. Also, by the same argument, |bn − b| < ε/2. Take the biggest n0 of
an and bn. Using the triangle inequality: |x+ y| ≤ |x|+ |y|, we get:

|an + bn − a− b| = |an − a+ bn − b| ≤ |an − a|+ |bn − b| < ε/2 + ε/2 = ε

Thus: an + bn → a+ b.

Another useful tool in talking about limits is the so-called ‘sandwich’
principle or ‘squeeze’ theorem. It is as follows: suppose you have three
sequences, (an)∞n=0, (bn)∞n=0 and (cn)∞n=0, and there exists a n0 such that
an ≤ bn ≤ cn for all n ≥ n0 and an → l and cn → l as n→∞, then bn → l.

Furthermore, so-called boundedness of a sequence is very important,
especially in addition with the condition that the sequence is decreasing or
increasing.

1A formal metric is a function d : X ×X → R≥0 for any X, such that some conditions
hold.

2These two definitions are only equivalent in complete metric spaces.
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Theorem A (the monotone convergence theorem):
Suppose (an)∞n=0 is a real sequence, is increasing and bounded, then
an → sup{an | n ∈ Z+} as n→∞. There is an analogy for decreasing and
bounded sequences.

Series are sums of infinitely many numbers. We write
∑∞

n=0 an = a0 +
a1 + a2 + . . . , where n is the starting index, and an the n-th element in a
sequence. A partial sum is simply a series that stops for a finite N , we write
the sequence of partial sums SN =

∑N
n=0 an = a0 + a1 + · · ·+ aN . We say a

infinite series converges whenever the sequence of partial sums converge, as
in the definition of convergence for plain real sequences.
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Exercises

1. Prove theorem A. Hint: first we may show that forM := sup{an | n ∈ N}
that ∃n ∈ N such that M − ε ≤ an ≤M for every ε > 0

2. Conclude that the subset of A ⊂ Q and
A = {q ∈ Q | q <

√
2 (or equivalent: q2 < 2)}, doesn’t have a supre-

mum in Q, but does if q ∈ R.

3. Give the definition of the infimum.

4. Prove that 1
n → 0 as n→∞ by giving an explicit condition for n0 in

terms of ε.

5. Prove the sandwich principle. Hint: we have for ε > 0 that |an− l| < ε
and |cn − l| < ε for all n greater than some n0 and so l − ε < an and
cn < l + ε

6. Prove that if an−bn → 0 and bn−cn → 0 as n→∞, then an−cn → 0.
Thus, you can interpret this as a equivalence relation R over the set
of all converging sequences:

(an)∞n=0R(bn)∞n=0 ⇐⇒ an − bn → 0

7. Show that
√
n+ 1−

√
n→ 0 as n→∞.

8. Consider the following cases for some (an)∞n=0, where an ∈ Q≥0 as
n→∞:

(a) an+1

an
→ 1 (come up with two sequences that have this property

and either converge or does not)

(b) an+1

an
→ a with |a| < 1

(c) an+1

an
→ a with |a| > 1

What can you conclude about limn→∞ an?

9. What is limn→∞ n
√
a with a ∈ R?

10. Prove: if n ∈ N then (1+ ε)n > 1+nε for all ε > 0, using the binomial
formula.

11. Using the previous exercise, prove: n1/n → 1 as n → ∞.Hint: think
about using ε = n−1/2

12. Prove that the series
∑∞

n=0(
1
2)n converges. Show what it converges to.

(This is a geometric series.)
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3.2 Graph theory

Graph theory is very different from analysis, but is a very animating subject,
because it deals with everyday, common-sense objects: networks, which we
will call graphs. Problems from the field of graph theory are: ‘the four colour
theorem’, ‘the travelling-salesman-problem’, making optimal time-schedules,
and deciding a minimum flow in a network to suffice some demand. So this
has more applied mathematics, compared to the first few sections.

A (simple) graph is an ordered pair of two sets: the vertices/nodes V and the
edges/lines E between these edges. A graphG is then denoted asG = (V,E),
with for example V = {1, 2, 3, 4, 5} and
E = {{1, 2}, {3, 1}, {5, 4}, {3, 4}, {2, 3}, {3, 5}}, represented visually by:

1 2

3 4

5

Figure 3.1: Example graph

The following is an enumeration of graph theoretical definitions. The de-
gree of a vertex is the number of edges it is present in, visually: the number
of lines that go out of the vertex. A k-regular graph is a graph with for
every vertex the same degree k. A complete graph is a graph such that all
vertices are connected, we write for the complete graph on n points: Kn. A
complete bipartite graph is a graph G = (V,E), such that there exists a
partitioning of V in Vn and Vm, such that all points in Vn are only connected
to all points in Vm, and thus the points of Vm only to Vn. For a complete
bipartite graph with two such partitioning subsets with number of elements
n,m we write Km,n. An example is in figure 3.2. The complement of
a graph G = (V,E) is the graph Ḡ = (V,E′) with E′ the set of all edges
that are not in G but are in the complete graph of G. A bipartite graph
is a graph such that there are two subsets of V , say V1 and V2, such that

Figure 3.2: K3,2
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{1,2}

{2,3}

{1,3}

{3,4}

{4,5}

{3,5}

Figure 3.3: Example linegraph

V1 ∩ V2 = ∅, and ∀v∈V1∧w∈V2 {v, w} ∈ E and ∀vi,vj∈V1 {vi, vj} /∈ E, and
similar for V2. So a bipartite graph is a partitioning on the vertices, such
that they both ‘connect’. A walk is a sequence of vertices (v0, v1, v2, . . . , vk),
such that ∀i∈N {vi, vi−1} ∈ E, with N = {1, 2, . . . , k}. A path W is a walk
such that ∀vi,vj∈W vi 6= vj . Where the set W is sloppily used as the set
of all vertices that are contained in the walk W . A closed walk, is a walk
such that v0 = vk. A circuit is a closed walk, such that all vertices are
different from each other. A graph is connected if ∀v,w∈V there exists a
path between v and w. A tree is a connected graph without a circuit. Two
graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if there is a bijective
mapping f : V → V ′, such that ∀{v,w}∈E {f(u), f(w)} ∈ E′. The linegraph
of a graph G = (V,E) is a graph L(G) = (V ′, E′), such that V ′ := E and

∀e,f∈E e and f have a point in G in common ⇐⇒ {e, f} ∈ E′.

See figure 3.3 for an example of the linegraph of the graph in figure 3.1. A
vertex-colouring of a graph G = (V,E) is a mapping f : V → C, with
C = {0, 1, 2, . . . , k} and k−1 the number of colours, such that ∀u,v∈V {u, v} ∈
E → f(u) 6= f(v). The number χ(G) is the minimal colour number of G,
which means that there exists a colouring with a possible minimum number
of colours. The number χ′(G) is the line-colouring number, analogous
to vertex colouring. A line-coloring is also a mapping f : E → C with
∀u,v∈E u ∩ v 6= ∅ → f(u) 6= f(v). A planar graph is a graph without edges
crossing each other, but how can we know if a graph is planar? Well, there
is a theorem about this, which we will deal with in the exercises. The facets
of a planar graph are the regions a planar graph is surrounding, the outside
region included. So, for a triangle (K3) the number of facets f is 2, the one
it is surrounding and the outside. For K4 it is 4.

Using induction we are going to prove Euler’s characteristic for polyhedrons:
|V | + f = |E| + 2. We use induction on n + m of graph G = (V,E), with
n = |V | and m = |E|. Check the base case n + m = 1. Now if n + m > 1,
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we have two possibilities:

Case 1: G contains no circuits. Thus we have a tree. Then there is a
point with degree 1 (see previous exercise). If we delete this point and its
connected line, we have n− 1 points and m− 1 lines and the same number
of facets. According to our induction hypothesis, we have (n − 1) + f =
(m− 1) + 2, implying n+ f = m+ 2.

Case 2: G contains a circuit C, pick a line on this C, {u, v}. If we delete
this line from G, the graph will still be connected. The n will stay n and
we have m − 1. The number of facets will be f − 1. According to our in-
duction hypothesis we have n+(f−1) = (m−1)+2, implying n+f = m+2.

A directed graph is an ordered pair of two sets: the arrows (directed)
and the vertices. So we have D = (V,A), where A is a set of ordered pairs
(v, u) ∈ A, v, u ∈ V , because direction matters. A flow from the vertex s
(source) to t (terminal) is a mapping f : A→ R+, so that

∀v∈V \{s,t}
∑

a∈δ−(v)

f(a) =
∑

a∈δ+(v)

f(a).

The problem of finding a minimum flow in a given network with given ca-
pacities is a famous optimization problem. An understandable algorithm for
this is the Ford-Fulkerson algorithm.



22 CHAPTER 3. TOPICS OF INTEREST

Exercises

1. Why can’t there be a 3-regular graph on 5 vertices?

2. Given a graph G = (V,E) with n vertices and degrees d1, d2, . . . , dn,
how many edges does this graph have?

3. A triangle is a circuit of length 3. Show that if a graph G = (V,E)
has six vertices either G or Ḡ contains a triangle.

4. Given a complete graph G = (V,E) with n vertices. How many unique
paths are there between two points in this graph?

5. Show that a 3-regular Hamiltonian graph has the property: χ′(G) = 3.

6. Show that if G is a tree, then G has at least one point with degree 1.
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3.3 Groups, rings and fields

Groups, rings and fields are very interesting objects in mathematics. For-
mally they are sets under some operations. In the case of a ‘group’, it is
under only one operation, and for a field and a ring, it’s two operations.
Groups are less complex than rings, in terms of the number of rules they
have to obey. And rings are in the same way less complex than fields. If you
know simple algebra you actually already used fields and groups, because R
under addition and multiplication is a field.

These are the rules for a group over a given set G and a given operation
‘∗’ between two elements, beware ‘∗’ is just notation, but most of the times
‘∗’ is a familiar operation such as addition (‘+’) or multiplication:

1. Closure: ∀x,y∈G x∗y ∈ G. The notation for an operation could also be
∗(x, y) or just xy, which returns a value in G, so it is just a function
∗ : G×G→ G.

2. Associativity: ∀x,y,z∈G (x ∗ y) ∗ z = x ∗ (y ∗ z).

3. Identity element: ∃e∈G∀x∈G e ∗ x = x ∗ e = x. So for every element in
G there is one neutral element in G which preserves the element.

4. Inverse element: ∀x∈G∃x-1∈G x ∗ x-1 = x-1 ∗ x = e

In fact, closure is a rather superfluous condition, because the operation
demands ∗ : G×G→ G, which can be said to be a sort of ‘closed’ operation
already. Furthermore, we say a subset H of a group G is a subgroup of G
(H < G) if ∀h1,h2∈H h1h2 ∈ H and ∀h∈H h-1 ∈ H. Moreover, if x ∗ y =
y ∗ x for every x, y ∈ G for a group G then G is an abelian group, i.e.
the group operation is commutative. A mapping φ : A → B (function)
between two groups A and B with operations ◦ and ∗ respectively is a
(group)homomorphism if

∀x,y∈A φ(x ◦ y) = φ(x) ∗ φ(y).

And if φ is a bijective mapping, then φ is a (group)isomorphism. We say
the kernel of a group homomorphism f : G1 → G2 is the set

{g1 ∈ G1 | f(g1) = eG2}.

Where eG2 is the identity element of G2. We write ker(f) for the kernel of
f .

The rules of a group also account for a field, but a field is more subtle
then a group. So the rules of a field over a set F with operations ‘+’ and
‘×’, which do not need to be actual addition and multiplication (‘×’ is often
left out as just xy, instead of x× y, I will do this too), are ∀x,y,z∈F :
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1. Closure under + and ×

2. Associativity of both operations: (x+y)+z = x+(y+z) and (xy)z =
x(yz).

3. Commutativity of both operations: x+ y = y + x and xy = yx.

4. Identity elements for both operations 0 (not necessarily 0 ∈ R) for +
and 1 (not necessarily 1 ∈ R) for × : x+ 0 = x and x1 = x.

5. Inverses for +: ∃−x∈F x+ (−x) = 0. Beware not to just simplify this
expression to x− x.

6. Inverses for × except for 0: ∃x-1∈F xx-1 = 1. Beware not to simplify
this expression to x/x.

7. Distributivity for + and ×: x(y + z) = xy + xz

For some notable groups we write the following:

1. The integers under addition Z+.

2. The rational numbers under multiplication Q×, so this Q\{0}, because
0 does not have a multiplicative inverse.

3. The real numbers under addition and multiplication: R+ and R×.

4. The complex numbers under addition and multiplication: C+ and C×.

Now rings are sets equipped with two operations (+,×) just like fields. But
now, only a ring R is an abelian group under + but not necessarily under
×. For × the following must hold for R to be a ring:

1. Left and right distributivity: x(y+z) = xy+xz and (y+z)x = yx+zx

2. There is a 1 ∈ R: 1x = x for all x ∈ R

3. Associativity: x(yz) = (xy)z for all x, y, z ∈ R.

Rings are interesting in the sense that they allow some sort of an abstraction
of the concept of prime/irreducible elements to be defined for any ring.
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Exercises

1. Prove that the identity element of a group is unique. Prove that the
inverse of an element is unique.

2. Prove that the subgroup of a group is a group.

3. We have a group homomorphism f : G1 → G2. Prove that ker(f) ⊆ G1

is a subgroup of G1.

4. Check that Z is a group under addition as you know it.

5. Check that C is a field under complex addition and multiplication.

6. Prove that if G is a group and H ⊂ G is a finite subset, such that
∀a,b∈H ab ∈ H and H 6= ∅, then H is a group.

7. Suppose we have φ : R+ → R>0 with x 7→ ex, with R>0 the real
numbers greater than zero under multiplication. Prove that φ is a
grouphomomorphism.

8. Given some square, as you know it, check that by doing any reflection
over a symmetry axis or leaving it (the identity element), gives you
something which is still a square. Conclude that the square under any
reflection is a group. In general, for any regular polyhedron with n
sides this is the dihedral group Dn.

9. Let a be some set and S = aa∩{functions f : a→ a that are bijective}.
Check that ∀x∈S x is some permutation σ of a. Check that S is a
group under the product ∗ : S → S, σ1, σ2 ∈ S σ2 ∗ σ1 = σ2 ◦ σ1 =
σ2(σ1). (as in the definition of permutations), for some example of a
(not a = ∅ or a = {1} or some other trivial easy example).

10. Check that Z[x], where these are the polynomials with integers co-
efficients, is a ring. (Any a0 + a1x + . . . anx

n ∈ Z[x] if ai ∈ Z for all
0 ≤ i ≤ n.)
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3.3.1 Normal subgroups and quotient groups

We say subgroup N of group G is a normal subgroup if: ∀n∈N∀g∈G gng−1 ∈
N. We write N / G. A (left) coset of a subgroup in a group (of which it is
a subgroup) is the set for some g ∈ G:

gH = {gh | h ∈ H}.

Exercise: check that the relation∼ on the set of a group G for some subgroup
H: a ∼ b ⇐⇒ ∃g∈G a, b ∈ gH, is an equivalence relation. With this
definition we can define quotient groups. First notice that the partition of
the equivalence relation gives a representative element per (left) coset of H
is G, together in the set S, such that

⋃
s∈S sH = G. For the set of all (left)

cosets of H in G we write G/H = {gH | g ∈ G}. If we have a representation
set S for G/H we sometimes write s for sH. In general we can write a for
aN . Exercise: N is a normal subgroup of G ⇐⇒ ∀a∈G aN = Na. Let N
be a normal subgroup of G, then we define an operation on G/N as follows:
a, b ∈ G (aN)(bN) ≡ abN . We have to check that it does not depend upon
our choice of representative (well-definedness): if aN = xN and bN = yN
(remember leftcosets are a partition of G), then

(xN)(yN) = xyN = x(yN) = x(bN) = x(Nb) = (xN)b = (aN)b = a(Nb) = abN.

Where we used that N is a normal subgroup of G. Exercise: check that
G/N is group under this (well-defined) operation. Exercise: check that the
canonical surjection φ : G→ G/N for g 7→ gN is a group homomorphism.

Now we can prove the fundamental theorem of homomorphisms together:

Theorem. Let G,H be groups and f : G → H a group homomorphism,
let N be a normal subgroup of G and φ : G → G/N the canonical ho-
momorphism. If N ⊂ ker(f) then there exists a unique homomorphism
h : G/N → H such that f = h ◦ φ.

Proof: we write a = aN = φ(a) for a ∈ G1. Define g : G1/N → G2

by g(a) = f(a). Exercise: check that our choice does not depend upon
our representative, i.e.: a1 = a2 ⇒ f(a1) = f(a2). Show that g is group
homomorphism. We now have g ◦ φ(a) = g(a) = f(a) for all a ∈ G1.
So g ◦ φ = f . Uniqueness: if g′ : G1/N → G2 and g′ ◦ φ = f , then
g′(a) = g′(φ(a)) = g′ ◦ φ(a) = f(a) = g(a). So g′ = g.

Using the quotient groups we can formally define Z/nZ, which is modulo
arithmetic with respect to n ∈ Z. We can take subgroup H = nZ = {nx |
x ∈ Z} and look at the cosets g +H with g ∈ Z.

Exercises

1. Suppose H is a subgroup of the group G. Check that aH = bH ⇒
ab−1 ∈ H. And aH = bH ∨ aH ∩ bH = ∅.
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3.3.2 Fields

R is a well known field, but contains pretty much elements. It is interesting
that there exist fields which rely on only finite elements. An example:
A field modulo to some prime number p is written as Fp. Its set contains all
elements modulo to the prime. Example:
We have F5 = {0̄, 1̄, 2̄, 3̄, 4̄}, with ā the remainder modulo 5. Now we can
write a multiplication and addition table and show that it is in fact a field:
+ 0̄ 1̄ 2̄ 3̄ 4̄

0̄ 0̄ 1̄ 2̄ 3̄ 4̄
1̄ 1̄ 2̄ 3̄ 4̄ 0̄
2̄ 2̄ 3̄ 4̄ 0̄ 1̄
3̄ 3̄ 4̄ 0̄ 1̄ 2̄
4̄ 4̄ 0̄ 1̄ 2̄ 3̄

The multiplication table is left to the reader as an exercise.

Now, finite fields are interesting for that they can be helpful in say-
ing things about non-finite rings in the subject of polynomial factorisation.
Moreover, they find application in cryptography. Furthermore, general fields
form the elements of vectors of linear spaces.

A vector space or linear space over a field F is a set V with two opera-
tions: vector addition + : V → V and scalar multiplication · : F → V such
that ∀u, v, w ∈ V and all a, b ∈ F we have:

1. (Associativity of vector addition) u+ (v + w) = (u+ v) + w

2. (Commutativity of vector addition) u+ v = v + u

3. (Identity of vector addition) there is a ~0 ∈ V (zero vector) such that
v +~0 = v

4. (Inverse of vector addition) there is a −v ∈ V such that v+ (−v) = ~0.

5. (Identity of scalar multiplication) 1v = v where 1 ∈ F such that 1 is
the multiplicative identity in F

6. (Compatibility) a(bv) = (ab)v

7. (Distributivity of scalar multiplication with respect to vector addition)
a(u+ v) = au+ av

8. (Distributivity of scalar sums) (a+ b)v = av + bv

Examples of common linear spaces are Rn and Cn. Linear spaces are studied
in the subject of linear algebra.
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Exercises

1. Prove that every element of a finite field appears only once in every
row and column in the multiplication and addition tables.

2. Prove that in a field F for x, y, z ∈ F: x+ y = x+ z ⇒ y = z.

3.4 Topology of the real numbers and metrics

The topology of the real numbers leads us to define imporant concepts you
have probably already heard of, such as continuity of a function or the limit
of a function. This all leads to a nice theorem: every power series

∑∞
n=0 anz

n

is continuous inside of its radius of convergence.
For a subset A ⊂ R we say, x ∈ R is a closure point of A if ∀ε>0∃y∈A|x−

y| < ε. Here the definition of the operator | . . . | : R×R→ R≥0 is important.
For R we use

(x, y) 7→

{
x− y if x ≥ y
y − x if y > x.

We write A for the set of all closure points of A. Now, if a ∈ A, there exists
a sequence {an}n∈N ⊆ A such that an → a as n→∞.

We name the epsilon neighbourhood a ∈ R the set:

Nε = {x ∈ R : |x− a| < ε}.

We say A ⊆ R is open if ∀a∈A Nε(a) ⊆ A.
Now we can say that a function f : A→ B with A,B ⊆ R is continuous

at a ∈ A if

∀ε>0∃δ>0∀x∈X |x− a| < δ ⇒ |f(x)− f(a)| < ε.

Now, the ∀x∈X |x− a| can be interchanged with ∀x∈Nδ(a).

Again, a metric on a set X is a function d : X × X → R≥0 such that
the following hold:

1. d(x, y) = 0 ⇐⇒ x = y

2. d(x, y) = d(y, x)

3. (Triangle Inequality) d(x, z) ≤ d(x, y) + d(y, z)

From analysis we learn that the notions of convergence can all be stated
with any well-defined metric. You may see this by looking at the proofs and
the use of the triangle inequality in the case in R.



(Provisional) Ending words

Now, the ending of the last section might seem a little abrupt, but this has a
reason. If this booklet will receive much (positive) response, I will consider
rewriting parts or writing more about other topics of interest. So, for now,
I hope you enjoyed the first version of this booklet.
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