

Pre-Final Round 2020

EXAMPLE SOLUTION

Problem A. 1

Find all points (x, y) where the functions $f(x), g(x), h(x)$ have the same value:

$$
f(x)=2^{x-5}+3, \quad g(x)=2 x-5, \quad h(x)=\frac{8}{x}+10
$$

Step 1: $g(x)=h(x) \Longrightarrow 0=2 x^{2}-15 x-8 \Longrightarrow x \in\{-0.5,8\}$
Step 2: $f(-0.5) \neq g(-0.5), f(8)=g(8)=11$
Solution: $(8,11)$

Problem A. 2

Determine the roots of the function $f(x)=\left(5^{2 x}-6\right)^{2}-\left(5^{2 x}-6\right)-12$.

Substitute $z=5^{2 x}-6$:

$$
0=z^{2}-z-12 \Longrightarrow z \in\{-3,4\}
$$

Solve for x :

$$
z=5^{2 x}-6=25^{x}-6 \Longrightarrow x=\log _{25}(z+6)
$$

Solution: $x=\log _{25}(3) \approx 0.341$ and $x=\log _{25}(10) \approx 0.715$

Problem A. 3

Find the derivative $f_{m}^{\prime}(x)$ of the following function with respect to x :

$$
f_{m}(x)=\left(\sum_{n=1}^{m} n^{x} \cdot x^{n}\right)^{2}
$$

$$
f(x)=2 \cdot\left(\sum_{n=1}^{m} n^{x} \cdot x^{n}\right) \cdot\left[\sum_{n=1}^{m} n^{x} \cdot x^{n}\right]^{\prime}=2 \cdot\left(\sum_{n=1}^{m} n^{x} \cdot x^{n}\right) \cdot\left(\sum_{n=1}^{m} n^{x} \cdot x^{n} \cdot\left(\frac{n}{x}+\log n\right)\right)
$$

Problem A. 4

Find at least one solution to the following equation:

$$
\frac{\sin \left(x^{2}-1\right)}{1-\sin \left(x^{2}-1\right)}=\sin (x)+\sin ^{2}(x)+\sin ^{3}(x)+\sin ^{4}(x)+\cdots
$$

Right-hand side (with $|\sin (x)|<1$):

$$
\sin (x)+\sin ^{2}(x)+\cdots=\sin (x) \cdot\left(1+\sin (x)+\sin ^{2}(x)+\cdots\right)=\frac{\sin (x)}{1-\sin (x)}
$$

It follows:

$$
\sin \left(x^{2}-1\right)=\sin (x) \Longrightarrow x^{2}-1=x \Longrightarrow 0=x^{2}-x-1 \Longrightarrow x \in\left\{\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right\}
$$

Solution: $x=\frac{1-\sqrt{5}}{2} \approx-0.618$ (Alternative solutions possible.)

Problem B. 1

Consider the following sequence of successive numbers of the 2^{k}-th power:

$$
1,2^{2^{k}}, 3^{2^{k}}, 4^{2^{k}}, 5^{2^{k}}, \ldots
$$

Show that the difference between the numbers in this sequence is odd for all $k \in \mathbb{N}$.

The difference Δ_{n} can be written as:

$$
\Delta_{n}=(n+1)^{2^{k}}-n^{2^{k}}
$$

If $n \equiv 0(\bmod 2)$:

$$
\Delta_{n} \equiv(0+1)^{2^{k}}-0^{2^{k}}=1^{2^{k}}=1 \quad(\bmod 2)
$$

If $n \equiv 1(\bmod 2)$:

$$
\Delta_{n} \equiv(1+1)^{2^{k}}-1^{2^{k}} \equiv 0^{2^{k}}-1^{2^{k}}=-1 \equiv 1 \quad(\bmod 2)
$$

Alternative: Proof by induction.

Problem B. 2

Prove this identity between two infinite sums (with $x \in \mathbb{R}$ and n ! stands for factorial):

$$
\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)^{2}=\sum_{n=0}^{\infty} \frac{(2 x)^{n}}{n!}
$$

By using the series expansion of the exponential function $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$:

$$
\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)^{2}=\left(e^{x}\right)^{2}=e^{2 x}=\sum_{n=0}^{\infty} \frac{(2 x)^{n}}{n!}
$$

Alternative: By using the fact that $\sum_{k=0}^{n}\binom{n}{k}=2^{n} \Rightarrow \sum_{k=0}^{n} \frac{1}{k!(n-k)!}=\frac{2^{n}}{n!}$ (must be proven):

$$
\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)^{2}=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{x^{n+m}}{n!m!}=\sum_{N=0}^{\infty} x^{N} \sum_{k=0}^{N} \frac{1}{k!(N-k)!}=\sum_{N=0}^{\infty} \frac{2^{N} x^{N}}{N!}
$$

Problem B. 3

You have given a function $\lambda: \mathbb{R} \rightarrow \mathbb{R}$ with the following properties $(x \in \mathbb{R}, n \in \mathbb{N})$:

$$
\lambda(n)=0, \quad \lambda(x+1)=\lambda(x), \quad \lambda\left(n+\frac{1}{2}\right)=1
$$

Find two functions $p, q: \mathbb{R} \rightarrow \mathbb{R}$ with $q(x) \neq 0$ for all $x \in \mathbb{R}$ such that $\lambda(x)=q(x)(p(x)+1)$.

From $\lambda(n)=0$ and $q(x) \neq 0$ it follows:

$$
p(n)=-1
$$

Because of $\lambda(x+1)=\lambda(x)$, we set:

$$
p(x+1)=p(x), q(x+1)=q(x)
$$

Consider the periodic function $p(x)=\sin (\ldots)$ with period $T=1$ and $p(n)=-1$:

$$
p(x)=\sin \left(2 \pi x-\frac{\pi}{2}\right)
$$

From $\lambda\left(n+\frac{1}{2}\right)=1$ it follows:

$$
q\left(\frac{1}{2}\right)=\frac{1}{p\left(\frac{1}{2}\right)+1}=\frac{1}{2}
$$

This satisfies $q(x+1)=q(x)=\frac{1}{2}$ and $q(x) \neq 0$. Thus:

$$
p(x)=\sin \left(2 \pi x-\frac{\pi}{2}\right), \quad q(x)=\frac{1}{2}
$$

(Alternative solutions possible.)

Problem B. 4

You have given an equal sided triangle with side length a. A straight line connects the center of the bottom side to the border of the triangle with an angle of α. Derive an expression for the enclosed area $A(\alpha)$ with respect to the angle (see drawing).

First we consider the area $\tilde{A}(\alpha)$ for $\alpha \leq \frac{\pi}{2}$: The gray area triangle has the following two angles:

$$
\alpha, \quad \beta=60^{\circ}=\frac{\pi}{3}
$$

The third angle follows:

$$
\gamma=180^{\circ}-60^{\circ}-\alpha=\pi-\frac{\pi}{3}-\alpha=\frac{2 \pi}{3}-\alpha
$$

The length of the connecting line c follows from the sine rule:

$$
\frac{\sin \left(\frac{\pi}{3}\right)}{c}=\frac{\sin (\gamma)}{a / 2} \Longrightarrow c=\frac{a}{2} \frac{\sin \left(\frac{\pi}{3}\right)}{\sin (\gamma)}
$$

The height of the gray triangle is $h=c \cdot \sin (\alpha)$. Thus:

$$
\tilde{A}(\alpha)=\frac{1}{2} \cdot \frac{a}{2} \cdot h=\frac{1}{2} \cdot \frac{a}{2} \cdot \frac{a}{2} \frac{\sin \left(\frac{\pi}{3}\right)}{\sin (\gamma)} \sin (\alpha)=\frac{a^{2}}{8} \cdot \frac{\sin \left(\frac{\pi}{3}\right)}{\sin \left(\frac{2 \pi}{3}-\alpha\right)} \sin (\alpha)
$$

And with $\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$:

$$
\tilde{A}(\alpha)=\frac{\sqrt{3}}{16} \cdot \frac{\sin (\alpha)}{\sin \left(\frac{2 \pi}{3}-\alpha\right)} \cdot a^{2}
$$

The area at $\alpha=\frac{\pi}{2}$ is then equal to $\tilde{A}\left(\frac{\pi}{2}\right)=\frac{\sqrt{3}}{8} a^{2}$. For all α we find:

$$
A(\alpha)=\left\{\begin{array}{ll}
\tilde{A}(\alpha) & \alpha \leq \frac{\pi}{2} \\
\tilde{A}\left(\frac{\pi}{2}\right)-\tilde{A}(\pi-\alpha) & \alpha>\frac{\pi}{2}
\end{array}= \begin{cases}\tilde{A}(\alpha) & \alpha \leq \frac{\pi}{2} \\
\frac{\sqrt{3}}{8} a^{2}-\tilde{A}(\pi-\alpha) & \alpha>\frac{\pi}{2}\end{cases}\right.
$$

Problem C. 1

Let $\pi(N)$ be the number of primes less than or equal to N (example: $\pi(100)=25$). The famous prime number theorem then states (with \sim meaning asymptotically equal):

$$
\pi(N) \sim \frac{N}{\log (N)}
$$

Proving this theorem is very hard. However, we can derive a statistical form of the prime number theorem. For this, we consider random primes which are generated as follows:
(i) Create a list of consecutive integers from 2 to N.
(ii) Start with 2 and mark every number >2 with a probability of $\frac{1}{2}$.
(iii) Let n be the next non-marked number. Mark every number $>n$ with a probability of $\frac{1}{n}$.
(iv) Repeat (iii) until you have reached N.

All the non-marked numbers in the list are called random primes.
(a) Let q_{n} be the probability of n being selected as a random prime during this algorithm.

Find an expression for q_{n} in terms of q_{n-1}.
(b) Prove the following inequality of q_{n} and q_{n+1} :

$$
\frac{1}{q_{n}}+\frac{1}{n}<\frac{1}{q_{n+1}}<\frac{1}{q_{n}}+\frac{1}{n-1}
$$

(c) Use the result from (b) to show this inequality:

$$
\sum_{k=1}^{N} \frac{1}{k}<\frac{1}{q_{N}}<\sum_{k=1}^{N} \frac{1}{k}+1
$$

(d) With this result, derive an asymptotic expression for q_{n} in terms of n.
(e) Let $\tilde{\pi}(N)$ be the number of random primes less than or equal to N. Use the result from (d) to derive an asymptotic expression for $\tilde{\pi}(N)$, i.e. the prime number theorem for random primes.

Solution (a): q_{n-1} is the probability of n being not marked before $n-1 ; \frac{1}{n-1}$ is the probability of n being marked if $n-1$ is marked (with q_{n-1} probability):

$$
q_{n}=q_{n-1}\left(1-\frac{q_{n-1}}{n-1}\right)
$$

Solution (b): From (a) we have:

$$
q_{n+1}=q_{n}\left(1-\frac{q_{n}}{n}\right) \Rightarrow \frac{1}{q_{n+1}}=\frac{1}{q_{n}}+\frac{1}{n-q_{n}}
$$

Since $0<q_{n} \leq 1$:

$$
\frac{1}{q_{n}}+\frac{1}{n}<\frac{1}{q_{n+1}}<\frac{1}{q_{n}}+\frac{1}{n-1}
$$

Solution (c): Rearranging the inequality:

$$
\frac{1}{n}<\frac{1}{q_{n+1}}-\frac{1}{q_{n}}<\frac{1}{n-1}
$$

We sum over the inequality from $n=3$ to $N-1$:

$$
\sum_{n=3}^{N-1} \frac{1}{n}<\sum_{n=3}^{N-1}\left(\frac{1}{q_{n+1}}-\frac{1}{q_{n}}\right)<\sum_{n=3}^{N-1} \frac{1}{n-1}
$$

For the middle term (with $q_{2}=1$ and thus $q_{3}=1 / 2$):

$$
\sum_{n=3}^{N-1}\left(\frac{1}{q_{n+1}}-\frac{1}{q_{n}}\right)=\frac{1}{q_{N}}-\frac{1}{q_{3}}=\frac{1}{q_{N}}-2
$$

Adding +2 to the left-hand side:

$$
\sum_{n=3}^{N-1} \frac{1}{n}+2=\sum_{n=1}^{N-1} \frac{1}{n}+\frac{1}{2}>\sum_{n=1}^{N} \frac{1}{n}
$$

Adding +2 to the right-hand side:

$$
\sum_{n=3}^{N-1} \frac{1}{n-1}+2=\sum_{n=2}^{N-2} \frac{1}{n}+2=\sum_{n=1}^{N-2} \frac{1}{n}+1<\sum_{n=1}^{N} \frac{1}{n}+1
$$

This gives:

$$
\sum_{n=1}^{N} \frac{1}{n}<\frac{1}{q_{N}}<\sum_{n=1}^{N} \frac{1}{n}+1
$$

Solution (d): It is well-know that the harmonic series grows like $\log (N)$, i.e.:

$$
\sum_{n=1}^{N} \frac{1}{n} \sim \log (N)
$$

With the inequality from (c) then follows:

$$
\frac{1}{q_{N}} \sim \log (N) \Longrightarrow q_{N} \sim \frac{1}{\log (N)}
$$

Solution (e): For $\tilde{\pi}(N)$ we find the following (i.e. the expectation value):

$$
\tilde{\pi}(N)=\sum_{n=2}^{N} q_{n} \sim \sum_{n=2}^{N} \frac{1}{\log (n)} \sim \frac{N}{\log (N)}
$$

Problem C. 2

This problem requires you to read following scientific article:

On the harmonic and hyperharmonic Fibonacci numbers.

Tuglu, N., Kızılates, C. \& Kesim, S. Adv Differ Equ (2015).
Link: https://doi.org/10.1186/s13662-015-0635-z

Use the content of the article to work on the problems (a-f) below. All problems marked with * are bonus problems (g-i) that can give you extra points. However, it is not possible to get more than 40 points in total.

Solution (a) What are the values of H_{n}, F_{n} and \mathbb{F}_{n} for $n=1,2,3$?
$H_{1}=1, \quad H_{2}=\frac{3}{2}=1.5, \quad H_{3}=\frac{11}{6}=1.8 \overline{3}$
$F_{1}=1, \quad F_{2}=1, \quad F_{3}=2$
$\mathbb{F}_{1}=1, \mathbb{F}_{2}=2, \mathbb{F}_{3}=\frac{5}{2}=2.5$

Solution (b) Determine the hyperharmonic number $H_{3}^{(10)}$ (Tip: use Equation 4) and $F_{2}^{(3)}$.
Applying Equation 4: $H_{3}^{(10)}=\sum_{t=1}^{3}\binom{3+10-t-1}{10-1} \frac{1}{t}=\sum_{t=1}^{3}\binom{12-t}{9} \frac{1}{t}=\frac{181}{3}=60 . \overline{3}$
From the definition: $F_{2}^{(3)}=\sum_{k=0}^{2} \sum_{i=0}^{k} F_{i}=F_{0}+\left(F_{0}+F_{1}\right)+\left(F_{0}+F_{1}+F_{2}\right)=3$

Solution (c) Use the definition of $x^{\underline{\underline{m}}}$ to simplify the following fraction: $\frac{x^{\underline{m+1}}-x^{\underline{m}}}{x^{\underline{m}}+x^{\underline{m+1}}}$

$$
\frac{x^{\underline{m+1}}-x^{\underline{m}}}{x^{\underline{m}}+x^{\underline{m+1}}}=\frac{(x-m)-1}{1+(x-m)}=\frac{x-m-1}{x-m+1}
$$

Solution (d) Present the proof of Theorem 1 step-by-step by applying Equation 6.
We set

$$
u(k)=\mathbb{F}_{k}, \quad \Delta v(k)=1
$$

such that

$$
\Delta u(k)=\mathbb{F}_{k+1}-\mathbb{F}_{k}=\frac{1}{F_{k+1}}, \quad v(k)=k
$$

With Equation 6 we get:

$$
\sum_{k=0}^{n-1} \mathbb{F}_{k}=\sum_{k=0}^{n-1} \mathbb{F}_{k} \cdot 1=\left.k \mathbb{F}_{k}\right|_{0} ^{n-1+1}-\sum_{k=0}^{n-1} E v(k) \frac{1}{F_{k+1}}=\left.k \mathbb{F}_{k}\right|_{0} ^{n}-\sum_{k=0}^{n-1} \frac{k+1}{F_{k+1}}=n \mathbb{F}_{n}-\sum_{k=0}^{n-1} \frac{k+1}{F_{k+1}}
$$

Solution (e) Show that $\mathbb{F}_{n}^{(r)}-\mathbb{F}_{n-2}^{(r)}=\mathbb{F}_{n}^{(r-1)}+\mathbb{F}_{n-1}^{(r-1)}$.

$$
\mathbb{F}_{n}^{(r)}=\sum_{k=1}^{n} \mathbb{F}_{k}^{(r-1)}=\sum_{k=1}^{n-2} \mathbb{F}_{k}^{(r-1)}+\mathbb{F}_{n-1}^{(r-1)}+\mathbb{F}_{n}^{(r-1)}=\mathbb{F}_{n-2}^{(r)}+\mathbb{F}_{n-1}^{(r-1)}+\mathbb{F}_{n}^{(r-1)}
$$

Solution (f) Determine the Euclidean norm of the circulant matrix $\operatorname{Circ}(1,1,0,0)$.

$$
\operatorname{Circ}(1,1,0,0)=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right) \Longrightarrow\|A\|_{E}=\sqrt{8} \approx 2.83
$$

Solution $\left(\mathrm{g}^{*}\right)$ Show that for $u(k)=\mathbb{F}_{k}^{2}$ we get $\Delta u(k)=\frac{1}{F_{k+1}}\left(2 \mathbb{F}_{k}+\frac{1}{F_{k+1}}\right)$.

$$
\begin{aligned}
\Delta u(k) & =\mathbb{F}_{k+1}^{2}-\mathbb{F}_{k}^{2}=\sum_{i \text { or } j=k+1} \frac{1}{F_{i} F_{j}}=\sum_{i \text { xor } j=k+1} \frac{1}{F_{i} F_{j}}+\frac{1}{F_{k+1}^{2}} \\
& =2 \sum_{i} \frac{1}{F_{i} F_{k+1}}+\frac{1}{F_{k+1}^{2}}=\frac{2 \mathbb{F}_{k}}{F_{k+1}}+\frac{1}{F_{k+1}^{2}}=\frac{1}{F_{k+1}}\left(2 \mathbb{F}_{k}+\frac{1}{F_{k+1}}\right)
\end{aligned}
$$

Solution (\mathbf{h}^{*}) Use the theorems from the article to prove the following identity:

$$
\sum_{k=1}^{n-1} k^{\underline{m}}\left(\mathbb{F}_{k}\right)^{2}=\frac{n^{\underline{m+1}}}{m+1} \mathbb{F}_{n}^{2}-\sum_{k=0}^{n-1} \frac{(k+1)^{\underline{m+1}}}{(m+1) F_{k+1}}\left(2 \mathbb{F}_{k}+\frac{1}{F_{k+1}}\right)
$$

Same steps as in Theorem 4, except with $u(k)=\mathbb{F}_{k}^{2}$ (see Theorem 2).

Solution (i^{*}) Use Equation 1 and Theorem 5 to show the following:

$$
\sum_{k=0}^{n-1} \frac{\mathbb{F}_{k}}{k+1}=\mathbb{F}_{n}+\sum_{k=0}^{n-1}\left(\frac{\mathbb{F}_{n} H_{k}}{n}-\frac{H_{k+1}}{F_{k+1}}\right)
$$

Rearranging Equation 1 and setting $k=0$ gives:

$$
H_{n}=1+\frac{1}{n} \sum_{k=0}^{n-1} H_{k}
$$

Inserting into Theorem 5:

$$
\sum_{k=0}^{n-1} \frac{\mathbb{F}_{k}}{k+1}=\mathbb{F}_{n}+\frac{\mathbb{F}_{n}}{n} \sum_{k=0}^{n-1} H_{k}-\sum_{k=0}^{n-1} \frac{H_{k+1}}{F_{k+1}}=\mathbb{F}_{n}+\sum_{k=0}^{n-1}\left(\frac{\mathbb{F}_{n} H_{k}}{n}-\frac{H_{k+1}}{F_{k+1}}\right)
$$

