

Pre-Final Round 2022

EXAMPLE SOLUTION

Problem A. 1

Determine A, B, C such that all of the following functions intersect the point $(2,2)$:

$$
f_{1}(x)=A x+1 \quad f_{2}(x)=B x^{2}+2 \quad f_{3}(x)=C x^{3}+3
$$

Solution:

$$
\begin{gathered}
2=f_{1}(1)=2 A+1 \quad \Longrightarrow \quad A=1 / 2 \\
2=f_{2}(1)=4 B+2 \quad \Longrightarrow \quad B=0 \\
2=f_{3}(1)=8 C+3 \quad \Longrightarrow \quad C=-1 / 8
\end{gathered}
$$

Problem A. 2

Find all $x \in \mathbb{R}$ that are solutions to this equation: $0=\left(1-x-x^{2}-\ldots\right) \cdot\left(2-x-x^{2}-\ldots\right)$

Solution: The RHS is divergent for $|x| \geq 1$, thus:

$$
f(x)=\left(2-\frac{1}{1-x}\right)\left(3-\frac{1}{1-x}\right)
$$

This gives us the roots of the function:

$$
\begin{aligned}
& \frac{1}{1-x}=2 \quad \Longrightarrow \quad x=\frac{1}{2} \\
& \frac{1}{1-x}=3 \quad \Longrightarrow \quad x=\frac{2}{3}
\end{aligned}
$$

Problem A. 3

Find the derivative $f^{\prime}(x)$ of the following function with respect to x :

$$
f(x)=\sin \left(\pi^{\sin x}+\pi^{\cos x}\right)
$$

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\cos \left(\pi^{\sin x}+\pi^{\cos x}\right) \cdot\left[\pi^{\sin x}+\pi^{\cos x}\right]^{\prime} \\
& =\cos \left(\pi^{\sin x}+\pi^{\cos x}\right) \cdot\left(\cos (x) \log (\pi) \pi^{\sin x}-\sin (x) \log (\pi) \pi^{\cos x}\right) \\
& =\cos \left(\pi^{\sin x}+\pi^{\cos x}\right) \cdot \log (\pi) \cdot\left(\cos (x) \pi^{\sin x}-\sin (x) \pi^{\cos x}\right)
\end{aligned}
$$

Problem B. 1

Let H_{n} define the sum of reciprocals of all integers from 1 to n :

$$
H_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{n}
$$

Prove the following identity:

$$
H_{2 n}-H_{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4} \pm \ldots+\frac{1}{2 n-1}-\frac{1}{2 n}
$$

Solution:

$$
\begin{aligned}
H_{2 n}-H_{n} & =\sum_{i=1}^{2 n} \frac{1}{i}-\sum_{k=1}^{n} \frac{1}{k} \\
& =\sum_{k=1}^{n} \frac{1}{2 k-1}+\sum_{k=1}^{n} \frac{1}{2 k}-\sum_{k=1}^{n} \frac{1}{k} \\
& =\sum_{k=1}^{n} \frac{1}{2 k-1}+\sum_{k=1}^{n}\left(\frac{1}{2 k}-\frac{1}{k}\right) \\
& =\sum_{k=1}^{n} \frac{1}{2 k-1}-\sum_{k=1}^{n} \frac{1}{2 k} \\
& =\sum_{i=1}^{2 n} \frac{(-1)^{i+1}}{i} \\
& =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4} \pm \ldots+\frac{1}{2 n-1}-\frac{1}{2 n}
\end{aligned}
$$

Problem B. 2

It is well known that squared brackets do not simply square the individual terms:

$$
\begin{gathered}
(1+2)^{2} \neq 1^{2}+2^{2} \\
(1+2+3)^{2} \neq 1^{2}+2^{2}+3^{2}
\end{gathered}
$$

Instead, we add a correction term ψ to make the equations hold true:

$$
\begin{gathered}
(1+2)^{2}=1^{2}+2^{2}+\psi_{2} \\
(1+2+3)^{2}=1^{2}+2^{2}+3^{2}+\psi_{3} \\
\ldots \\
(1+2+3+\ldots+n)^{2}=1^{2}+2^{2}+3^{2}+\ldots+n^{2}+\psi_{n}
\end{gathered}
$$

Show that the correction term ψ_{n} has the following form and determine the values of α and β :

$$
\psi_{n}=\frac{n^{4}-n^{2}}{\alpha}+\frac{n^{3}-n}{\beta}
$$

Solution: We get $\alpha=4$ and $\beta=6$:

$$
\begin{aligned}
\psi_{n} & =(1+2+3+\ldots+n)^{2}-1^{2}+2^{2}+3^{2}+\ldots+n^{2} \\
& =\left(\sum_{k=1}^{n} k\right)^{2}-\sum_{k=1}^{n} k^{2} \\
& =\left(\frac{n(n+1)}{2}\right)^{2}-\frac{n(n+1)(2 n+1)}{6} \\
& =\frac{n^{2}(n+1)^{2}}{4}-\frac{n(n+1)(2 n+1)}{6} \\
& =\frac{1}{12}\left(3 n^{2}(n+1)^{2}-2 n(n+1)(2 n+1)\right) \\
& =\frac{1}{12}\left(3 n^{4}+2 n^{3}-3 n^{2}-2 n\right) \\
& =\frac{n^{4}-n^{2}}{4}+\frac{n^{3}-n}{6}
\end{aligned}
$$

Problem B. 3

You are given two overlaying squares with side length a. One of the squares is fixed at the bottom right corner and rotated by an angle of α (see drawing). Find an expression for the enclosed area $A(\alpha)$ between the two squares with respect to the rotation angle α.

Solution: The area is a kite with dimensions h and c :

$$
A(\alpha)=\frac{1}{2} \cdot h \cdot c
$$

Let $\angle(h, a)=\beta$ and let x be the varying upper line segment:

$$
\begin{gathered}
\beta=\left(\frac{\pi}{2}-\alpha\right) \cdot \frac{1}{2}=\frac{\pi}{4}-\frac{\alpha}{2} \\
x=a \cdot \tan \beta
\end{gathered}
$$

Then we have:

$$
\begin{aligned}
A(\alpha) & =\frac{1}{2} \cdot \sqrt{a^{2}+x^{2}} \cdot 2 a \sin \beta \\
& =a^{2} \cdot \sqrt{1+\tan ^{2} \beta} \cdot \sin \beta \\
& =a^{2} \cdot \sqrt{1+\tan ^{2}\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)} \cdot \sin \left(\frac{\pi}{4}-\frac{\alpha}{2}\right)
\end{aligned}
$$

Problem C. 1

For this problem, we define the fractional part of $x \in \mathbb{R}_{\geq 0}$ as

$$
\{x\}=x-\lfloor x\rfloor
$$

where $\lfloor x\rfloor$ is the integer part of x, i.e., the greatest integer less than or equal to x.
(a) Draw the function $\{x\}$ in a coordinate system for $0 \leq x \leq 3$.
(b) Find the area A_{n} under the graph of $\{x\}$ between 0 and $n \in \mathbb{N}$ as given by:

$$
A_{n}=\int_{0}^{n}\{x\} d x
$$

Remember the definition of H_{n} from problem B.1. H_{n} grows similar to $\log (n)$ and they define the well-known constant γ in mathematics:

$$
\gamma=\lim _{n \rightarrow \infty}\left(H_{n}-\log (n)\right)=0.5772 \ldots
$$

(c) Use this to prove the following identity:

$$
\int_{1}^{\infty} \frac{\{x\}}{x^{2}} d x=1-\gamma
$$

Hint: Split the integral into individual sums for each integer value.

Solution a: (sawtooth function from 0 to 3 ; three peaks)

Solution b:

$$
A_{n}=\int_{0}^{n}\{x\} d x=n \cdot \int_{0}^{1} x d x=n \cdot\left[\frac{x^{2}}{2}\right]_{0}^{1}=\frac{n}{2}
$$

Solution c:

$$
\begin{aligned}
\int_{1}^{\infty} \frac{\{x\}}{x^{2}} d x & =\lim _{n \leftarrow \infty}\left[\int_{1}^{2} \frac{x-1}{x^{2}} d x+\int_{2}^{3} \frac{x-2}{x^{2}} d x+\ldots+\int_{n}^{n-1} \frac{x-(n-1)}{x^{2}} d x\right] \\
& =\lim _{n \leftarrow \infty}\left[\int_{1}^{2}\left(\frac{1}{x}-\frac{1}{x^{2}}\right) d x+\int_{2}^{3}\left(\frac{1}{x}-2 \frac{1}{x^{2}}\right) d x+\ldots+\int_{n}^{n-1}\left(\frac{1}{x}-(n-1) \frac{1}{x^{2}}\right) d x\right] \\
& =\lim _{n \leftarrow \infty}\left[\int_{1}^{n} \frac{1}{x} d x-\int_{1}^{2} \frac{1}{x^{2}} d x-2 \int_{2}^{3} \frac{1}{x^{2}} d x-\ldots-(n-1) \int_{n}^{n-1} \frac{1}{x^{2}} d x\right] \\
& =\lim _{n \leftarrow \infty}\left[[\log (x)]_{1}^{n}-\left[-\frac{1}{x}\right]_{1}^{2}-2\left[-\frac{1}{x}\right]_{2}^{3}-\ldots-(n-1)\left[-\frac{1}{x}\right]_{n-1}^{n}\right] \\
& =\lim _{n \leftarrow \infty}\left[\log (n)-\left(1-\frac{1}{2}\right)-2\left(\frac{1}{2}-\frac{1}{3}\right)-\ldots-(n-1)\left(\frac{1}{n-1}-\frac{1}{n}\right)\right] \\
& =\lim _{n \leftarrow \infty}\left[\log (n)-\sum_{k=2}^{n}(k-1)\left(\frac{1}{k-1}-\frac{1}{k}\right)\right] \\
& =\lim _{n \leftarrow \infty}\left[\log (n)-\sum_{k=2}^{n}\left(1-\frac{k-1}{k}\right)\right] \\
& =\lim _{n \leftarrow \infty}\left[\log (n)-\sum_{k=2}^{n} \frac{1}{k}\right] \\
& =\lim _{n \leftarrow \infty}\left[\log (n)-H_{n}+1\right] \\
& =1-\gamma
\end{aligned}
$$

Problem C. 2

This problem requires you to read following scientific article:

Sum of Reciprocals of Germain Primes.
Wagstaff, Samuel S. Journal of Integer Sequences, 24 (2021). Link: https://cs.uwaterloo.ca/journals/JIS/VOL24/Wagstaff/wag4.pdf

Use the content of the article to work on the problems (a-f) below:
(a) What is the difference between twin primes and Germain primes? Give examples for both.
$\longrightarrow p$ is a twin prime iff $p+2$ or $p-2$ is also prime; Examples: 3, 5, 7, 11, 13, 17, 19
$\longrightarrow p$ is a Germain prime iff $2 p+1$ is also prime; Examples: $2,3,5,11,23,29,41,53$
(b) Which numbers does the set $\mathcal{S}_{1,0}$ represent and what is the value of $S_{1,2}^{\prime}\left(4 \cdot 10^{18}\right)$?
$\longrightarrow \mathcal{S}_{1,0}=\{p: p$ prime $\}$, i.e., the set of all prime numbers
\longrightarrow from the first paragraph: $S_{1,2}^{\prime}\left(4 \cdot 10^{18}\right)=1.840503$
(c) In the proof of Theorem 1, explain why $\sum_{p \leq x, p \in \mathcal{S}_{a, b}} \frac{1}{p}=\sum_{t=1}^{x} \frac{\pi_{a, b}(t)-\pi_{a, b}(t-1)}{t}$?
$\longrightarrow \pi_{a, b}(t)-\pi_{a, b}(t-1)$ is 1 if $t \in \mathcal{S}_{a, b}$ (to increase $\pi_{a, b}(t)$ by one) and 0 otherwise; thus, the $1 / t$ terms that are exactly $1 / p$ with $p \in \mathcal{S}_{a, b}$ remain in the sum
(d) Explain the difference between Table 1 and Table 3.
\longrightarrow Table 1 are the numerically calculated values $S_{a, b}(x)$ (up to x)
\longrightarrow Table 3 shown an extended estimate by applying the Hardy-Littlewood approximation; the values are calculated with $S_{a, b}(x)+2 c_{2} / \log (x)$
(e) Use Theorem 3 to calculate an upper bound for $\pi_{1,16}\left(e^{100}\right)$ in orders of magnitude.
$\longrightarrow \pi_{1,16}\left(e^{100}\right)<\frac{16 c_{2} e^{100}}{\log \left(e^{100}\right)\left(8.37+\log \left(e^{100}\right)\right)}=\frac{16 c_{2}}{100 \cdot(8.37+100)} \cdot e^{100}=\frac{16 c_{2}}{100 \cdot(8.37+100)} \cdot 10^{100 \cdot \lg (e)}<9.75$. $10^{-4} \cdot 10^{43.5}<10^{41}$
(f) Show in detail why the left- and right-hand side of equation (1) in Theorem 4 are equal.
\longrightarrow For the integer domain it is $\pi^{\prime}(t)=\pi(t)-\pi(t-1)$; thus, with integration by parts:

$$
\int_{M}^{N} \frac{\pi(t)}{t^{2}} d t=\left[-\frac{\pi(t)}{t}\right]_{M}^{N}+\int_{M}^{N} \frac{\pi^{\prime}(t)}{t} d t=\frac{\pi(M)}{M}-\frac{\pi(N)}{N}+\sum_{t=M}^{N} \frac{\pi(t)-\pi(t-1)}{t} d t
$$

