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Problem A.1

Determine A, B, C such that all of the following functions intersect the point (2, 2):

f1(x) = Ax+ 1 f2(x) = Bx2 + 2 f3(x) = Cx3 + 3

Solution:
2 = f1(1) = 2A+ 1 =⇒ A = 1/2

2 = f2(1) = 4B + 2 =⇒ B = 0

2 = f3(1) = 8C + 3 =⇒ C = −1/8
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Problem A.2

Find all x ∈ R that are solutions to this equation: 0 = (1− x− x2 − ...) · (2− x− x2 − ...)

Solution: The RHS is divergent for |x| ≥ 1, thus:

f(x) =

(
2− 1

1− x

)(
3− 1

1− x

)
This gives us the roots of the function:

1

1− x
= 2 =⇒ x =

1

2

1

1− x
= 3 =⇒ x =

2

3
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Problem A.3

Find the derivative f ′(x) of the following function with respect to x:

f(x) = sin
(
πsinx + πcosx

)

Solution:

f ′(x) = cos
(
πsinx + πcosx

)
· [πsinx + πcosx]′

= cos
(
πsinx + πcosx

)
· (cos(x) log(π)πsinx − sin(x) log(π)πcosx)

= cos
(
πsinx + πcosx

)
· log(π) · (cos(x)πsinx − sin(x)πcosx)
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Problem B.1

Let Hn define the sum of reciprocals of all integers from 1 to n:

Hn = 1 +
1

2
+

1

3
+

1

4
+ ...+

1

n

Prove the following identity:

H2n −Hn = 1− 1

2
+

1

3
− 1

4
± ...+ 1

2n− 1
− 1

2n

Solution:

H2n −Hn =
2n∑
i=1

1

i
−

n∑
k=1

1

k

=
n∑
k=1

1

2k − 1
+

n∑
k=1

1

2k
−

n∑
k=1

1

k

=
n∑
k=1

1

2k − 1
+

n∑
k=1

(
1

2k
− 1

k

)
=

n∑
k=1

1

2k − 1
−

n∑
k=1

1

2k

=
2n∑
i=1

(−1)i+1

i

= 1− 1

2
+

1

3
− 1

4
± ...+ 1

2n− 1
− 1

2n
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Problem B.2

It is well known that squared brackets do not simply square the individual terms:

(1 + 2)2 6= 12 + 22

(1 + 2 + 3)2 6= 12 + 22 + 32

Instead, we add a correction term ψ to make the equations hold true:

(1 + 2)2 = 12 + 22 + ψ2

(1 + 2 + 3)2 = 12 + 22 + 32 + ψ3

...

(1 + 2 + 3 + ...+ n)2 = 12 + 22 + 32 + ...+ n2 + ψn

Show that the correction term ψn has the following form and determine the values of α and β:

ψn =
n4 − n2

α
+
n3 − n
β

Solution: We get α = 4 and β = 6:

ψn = (1 + 2 + 3 + ...+ n)2 − 12 + 22 + 32 + ...+ n2

=

(
n∑
k=1

k

)2

−
n∑
k=1

k2

=

(
n(n+ 1)

2

)2

− n(n+ 1)(2n+ 1)

6

=
n2(n+ 1)2

4
− n(n+ 1)(2n+ 1)

6

=
1

12

(
3n2(n+ 1)2 − 2n(n+ 1)(2n+ 1)

)
=

1

12

(
3n4 + 2n3 − 3n2 − 2n

)
=
n4 − n2

4
+
n3 − n

6
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Problem B.3

You are given two overlaying squares with side length a. One of the squares is fixed at the
bottom right corner and rotated by an angle of α (see drawing). Find an expression for the
enclosed area A(α) between the two squares with respect to the rotation angle α.

αα

A
A

Solution: The area is a kite with dimensions h and c:

A(α) =
1

2
· h · c

Let ∠(h, a) = β and let x be the varying upper line segment:

β =
(π

2
− α

)
· 1

2
=
π

4
− α

2

x = a · tan β

Then we have:

A(α) =
1

2
·
√
a2 + x2 · 2a sin β

= a2 ·
√

1 + tan2 β · sin β

= a2 ·
√

1 + tan2
(π

4
− α

2

)
· sin

(π
4
− α

2

)
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Problem C.1

For this problem, we define the fractional part of x ∈ R≥0 as

{x} = x− bxc

where bxc is the integer part of x, i.e., the greatest integer less than or equal to x.

(a) Draw the function {x} in a coordinate system for 0 ≤ x ≤ 3.

(b) Find the area An under the graph of {x} between 0 and n ∈ N as given by:

An =

∫ n

0

{x} dx

Remember the definition of Hn from problem B.1. Hn grows similar to log(n) and they define
the well-known constant γ in mathematics:

γ = lim
n→∞

(Hn − log(n)) = 0.5772...

(c) Use this to prove the following identity:∫ ∞
1

{x}
x2

dx = 1− γ

Hint: Split the integral into individual sums for each integer value.
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Solution a: (sawtooth function from 0 to 3; three peaks)

Solution b:

An =

∫ n

0

{x} dx = n ·
∫ 1

0

x dx = n ·
[
x2

2

]1
0

=
n

2

Solution c:∫ ∞
1

{x}
x2

dx = lim
n←∞

[∫ 2

1

x− 1

x2
dx+

∫ 3

2

x− 2

x2
dx+ ...+

∫ n−1

n

x− (n− 1)

x2
dx

]
= lim

n←∞

[∫ 2

1

(
1

x
− 1

x2

)
dx+

∫ 3

2

(
1

x
− 2

1

x2

)
dx+ ...+

∫ n−1

n

(
1

x
− (n− 1)

1

x2

)
dx

]
= lim

n←∞

[∫ n

1

1

x
dx−

∫ 2

1

1

x2
dx− 2

∫ 3

2

1

x2
dx− ...− (n− 1)

∫ n−1

n

1

x2
dx

]
= lim

n←∞

[
[log(x)]n1 −

[
−1

x

]2
1

− 2

[
−1

x

]3
2

− ...− (n− 1)

[
−1

x

]n
n−1

]

= lim
n←∞

[
log(n)−

(
1− 1

2

)
− 2

(
1

2
− 1

3

)
− ...− (n− 1)

(
1

n− 1
− 1

n

)]
= lim

n←∞

[
log(n)−

n∑
k=2

(k − 1)

(
1

k − 1
− 1

k

)]

= lim
n←∞

[
log(n)−

n∑
k=2

(
1− k − 1

k

)]

= lim
n←∞

[
log(n)−

n∑
k=2

1

k

]
= lim

n←∞
[log(n)−Hn + 1]

= 1− γ
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Problem C.2

This problem requires you to read following scientific article:

Sum of Reciprocals of Germain Primes.
Wagstaff, Samuel S. Journal of Integer Sequences, 24 (2021).

Link: https://cs.uwaterloo.ca/journals/JIS/VOL24/Wagstaff/wag4.pdf

Use the content of the article to work on the problems (a-f) below:

(a) What is the difference between twin primes and Germain primes? Give examples for both.

−→ p is a twin prime iff p+ 2 or p− 2 is also prime; Examples: 3, 5, 7, 11, 13, 17, 19
−→ p is a Germain prime iff 2p+ 1 is also prime; Examples: 2, 3, 5, 11, 23, 29, 41, 53

(b) Which numbers does the set S1,0 represent and what is the value of S ′1,2(4 · 1018)?

−→ S1,0 = {p : p prime}, i.e., the set of all prime numbers
−→ from the first paragraph: S ′1,2(4 · 1018) = 1.840503

(c) In the proof of Theorem 1, explain why
∑

p≤x,p∈Sa,b

1
p

=
x∑
t=1

πa,b(t)−πa,b(t−1)
t

?

−→ πa,b(t) − πa,b(t − 1) is 1 if t ∈ Sa,b (to increase πa,b(t) by one) and 0 otherwise; thus,
the 1/t terms that are exactly 1/p with p ∈ Sa,b remain in the sum

(d) Explain the difference between Table 1 and Table 3.

−→ Table 1 are the numerically calculated values Sa,b(x) (up to x)
−→ Table 3 shown an extended estimate by applying the Hardy-Littlewood approximation; the
values are calculated with Sa,b(x) + 2c2/ log(x)

(e) Use Theorem 3 to calculate an upper bound for π1,16(e
100) in orders of magnitude.

−→ π1,16(e
100) < 16c2e100

log(e100)(8.37+log(e100))
= 16c2

100·(8.37+100)
· e100 = 16c2

100·(8.37+100)
· 10100·lg(e) < 9.75 ·

10−4 · 1043.5 < 1041

(f) Show in detail why the left- and right-hand side of equation (1) in Theorem 4 are equal.

−→ For the integer domain it is π′(t) = π(t)− π(t− 1); thus, with integration by parts:∫ N

M

π(t)

t2
dt =

[
−π(t)

t

]N
M

+

∫ N

M

π′(t)

t
dt =

π(M)

M
− π(N)

N
+

N∑
t=M

π(t)− π(t− 1)

t
dt
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