

Final Round 2022

The final round exam was given in the form of an online exam. Each participant was given a subset of 20 questions in random order. This paper version is only available for training purposes.

Question 1 : What are the roots of this function?:

$$
f(x)=\log _{3}\left(9^{x}\right) \cdot\left(x^{2}-4\right)
$$

(A) $\{-1,0,1\}$
(B) $\{-2,0,2\}$
(C) $\{-1,0.5,1\}$
(D) $\{-2,0.5,2\}$

Question 2: What is the value of this infinite sum?:

$$
1+\frac{2}{3}+\frac{2}{3^{2}}+\frac{2}{3^{3}}+\frac{2}{3^{4}}+\ldots
$$

(A) 2
(B) 3
(C) $1 / 3$
(D) $3 / 2$

Question 3: What is the value of this infinite sum?:

$$
\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)+\left(\frac{1}{2^{3}}-\frac{1}{3^{3}}\right)+\ldots
$$

(A) $1 / 2$
(B) $1 / 3$
(C) $2 / 3$
(D) $3 / 2$

Question 4 : Find the numerical value of this expression:

$$
\log _{3}\left(5 \cdot \log _{2}\left(8+2^{3}\right)+7\right)
$$

(A) 1
(B) 2
(C) 3
(D) 4

Question 5: Let $\sigma(n)$ be the sum of all positive divisors of the integer n. Let p be a prime number. It is true that ...
(A) $\sigma\left(p^{2}\right)=2 p+1$
(B) $\sigma\left(p^{2}\right)>2 p^{2}$
(C) $\sigma\left(p^{2}\right)=2 p^{2}$
(D) $\sigma\left(p^{2}\right)<2 p^{2}$

Question 6 : Let $\sigma(n)$ be the sum of all positive divisors of the integer n. The value of $\sigma(30)$ is ...
(A) 27
(B) 38
(C) 42
(D) 72

Question 7 : The area of an equilateral triangle with side length a is equal to ...
(A) $a^{2} \cdot \sqrt{2} / 3$
(B) $a^{2} \cdot \sqrt{2} / 4$
(C) $a^{2} \cdot \sqrt{3} / 3$
(D) $a^{2} \cdot \sqrt{3} / 4$

Question 8 : Determine A such that the function $f(x)$ intersects the point $(2,2)$:

$$
f(x)=A x^{2}+x+1
$$

(A) $A=0$
(B) $A=-1$
(C) $A=-1 / 2$
(D) $A=-1 / 4$

Question 9 : Find a point of intersection of the functions $f(x)$ and $g(x)$:

$$
\begin{aligned}
& f(x)=2 x^{2}+4 \\
& g(x)=3 x^{2}+3
\end{aligned}
$$

(A) $(-1,-4)$
(B) $(1,4)$
(C) $(-1,-6)$
(D) $(1,6)$

Question 10 : Find the derivative $f^{\prime}(x)$ of this function:

$$
f(x)=\pi^{\sin (x)}
$$

(A) $f^{\prime}(x)=\sin (x) \cdot \ln (\pi) \cdot \pi^{\sin (x)}$
(B) $f^{\prime}(x)=\cos (x) \cdot \ln (\pi) \cdot \pi^{\sin (x)}$
(C) $f^{\prime}(x)=\sin (x) \cdot \ln (\pi) \cdot \pi^{\cos (x)}$
(D) $f^{\prime}(x)=\cos (x) \cdot \ln (\pi) \cdot \pi^{\cos (x)}$

Question 11 : Let H_{n} define the sum of reciprocals of all integers from 1 to n. Which one of the following identities is correct?
(A) $1=n \cdot\left(H_{2 n}-H_{2 n-1}\right)$
(B) $1=n \cdot\left(H_{2 n}-H_{2 n-2}\right)$
(C) $1=2 n \cdot\left(H_{2 n}-H_{2 n-1}\right)$
(D) $1=2 n \cdot\left(H_{2 n}-H_{2 n-2}\right)$

Question 12: What is the value of φ such that this equation holds?:

$$
(1+2+3+4)^{2}=1^{2}+2^{2}+3^{2}+4^{2}+\varphi
$$

(A) $\varphi=15$
(B) $\varphi=30$
(C) $\varphi=50$
(D) $\varphi=70$

Question 13 : What is the surface area of a kite with diagonals a and b ?:

(A) $a b / 4$
(B) $a b / 2$
(C) $3 a b / 4$
(D) $3 a b / 2$

Question 14: Let $\{x\}$ be the fractional part of x. Given the following graph, find the function $f(x)$:

(A) $f(x)=\left\{x^{2}\right\}-x$
(B) $f(x)=\left\{x^{2}\right\}$
(C) $f(x)=\left\{x^{3}\right\}-x$
(D) $f(x)=\left\{x^{3}\right\}$

Question 15 : Let $\{x\}$ be the fractional part of x. Given the following graph, find the function $f(x)$:

(A) $f(x)=\{x / 2\}+x$
(B) $f(x)=\{x / 2\}-x$
(C) $f(x)=\{x\}+x$
(D) $f(x)=\{x\}-x$

Question 16 : Let $\{x\}$ be the fractional part of x and $\gamma=0.577 \ldots$ a constant. Which function $f(x)$ makes this equation true?:

$$
\int_{1}^{\infty} f(x) d x=1-\gamma
$$

(A) $f(x)=\{x\} / x$
(B) $f(x)=\left\{x^{2}\right\} / x$
(C) $f(x)=\{x\} / x^{2}$
(D) $f(x)=\left\{x^{2}\right\} / x^{2}$

Question 17 : The integer p is a twin prime if ...
(A) $p+1$ or $p-1$ is prime.
(B) $p+2$ or $p-2$ is prime.
(C) $2 p+1$ or $2 p-1$ is prime.
(D) $2 p+2$ or $2 p-2$ is prime.

Question 18 : The integer p is a Germain prime if ...
(A) $p+1$ is prime.
(B) $p+2$ is prime.
(C) $2 p+1$ is prime.
(D) $2 p+2$ is prime

Question 19 : Let $\pi_{a, b}(x)$ be the number of primes $p \leq x$ for which $a p+b$ is also prime. What is the value of $\pi_{1,2}(10)$?
(A) $\pi_{1,2}(10)=2$
(B) $\pi_{1,2}(10)=3$
(C) $\pi_{1,2}(10)=4$
(D) $\pi_{1,2}(10)=5$

Question 20 : How does this sequence of numbers continue?:

$$
1,2,7,8,13,14,19, \ldots
$$

(A) 20
(B) 21
(C) 22
(D) 23

Question 21: Let H_{n} define the sum of reciprocals of all integers from 1 to n. What is the numerical value of $H_{10}-H_{7}$?
(A) $H_{10}-H_{7}=\frac{121}{360}$
(B) $H_{10}-H_{7}=\frac{123}{360}$
(C) $H_{10}-H_{7}=\frac{127}{360}$
(D) $H_{10}-H_{7}=\frac{129}{360}$

Question 22: The expression $(2+\sqrt{3})^{2} \cdot(2-\sqrt{3})^{2}$ is equal to ...
(A) 1
(B) 2
(C) 3
(D) 6

Question 23: Let $n!=1 \cdot 2 \cdot \ldots \cdot 10$. Which inequality holds true for $\ln (10!)$?
(A) $9 \leq \ln (10$! $)<12$
(B) $12 \leq \ln (10$! $)<15$
(C) $15 \leq \ln (10!)<18$
(D) $18 \leq \ln (10!)<21$

Question 24: Find the correct $f(x)$ such that this equation holds true:

$$
f^{\prime}(x)=\frac{\cos (x)-2 \sin (x) / x}{x^{2}}
$$

(A) $f(x)=\frac{\sin (x)}{x}$
(B) $f(x)=\frac{\cos (x)}{x}$
(C) $f(x)=\frac{\cos (x)}{x^{2}}$
(D) $f(x)=\frac{\sin (x)}{x^{2}}$

Question 25 : Determine the value of C :

$$
\begin{gathered}
C=A^{B}+B^{A}-C \\
B=A^{2}+2^{A} \\
A=3^{2}-2^{3}
\end{gathered}
$$

(A) 1
(B) 2
(C) 3
(D) 4

Question 26 : Determine the value of the following term:

$$
\sin \left(\pi \cdot \cos \left(\pi \cdot \frac{\tan (\pi / 6)}{\sqrt{3}}\right)\right)
$$

(A) 0
(B) 1
(C) $\sqrt{2} / 2$
(D) $\sqrt{3} / 2$

Question 27 : You throw a dice (with the numbers 1 to 6) twice. What is the probability of never throwing the number 6 ?
(A) $\approx 50 \%$
(B) $\approx 60 \%$
(C) $\approx 70 \%$
(D) $\approx 80 \%$

