

Final Round 2022

The final round exam was given in the form of an online exam. Each participant was given a subset of 20 questions in random order. This paper version is only available for training purposes.

Question 1 : What are the roots of this function?:

$$f(x) = \log_3(9^x) \cdot (x^2 - 4)$$
(A) {-1,0,1} (B) {-2,0,2} (C) {-1,0.5,1} (D) {-2,0.5,2}

4)

Question 2 : What is the value of this infinite sum?:

(A) 2 (B) 3 (C)
$$1/3$$
 (D) $3/2$

Question 3 : What is the value of this infinite sum?:

Question 4 : Find the numerical value of this expression:

$$\log_3 \left(5 \cdot \log_2(8 + 2^3) + 7 \right)$$

(A) 1(B) 2(C) 3(D) 4

Question 5: Let $\sigma(n)$ be the sum of all positive divisors of the integer n. Let p be a prime number. It is true that ...

(A) $\sigma(p^2) = 2p + 1$ (B) $\sigma(p^2) > 2p^2$ (C) $\sigma(p^2) = 2p^2$ (D) $\sigma(p^2) < 2p^2$

Question 6: Let $\sigma(n)$ be the sum of all positive divisors of the integer n. The value of $\sigma(30)$ is ...

(A) 27	(B) 38	(C) 42	(D) 72
--------	--------	--------	--------

Question 7: The area of an equilateral triangle with side length *a* is equal to ...

(A) $a^2 \cdot \sqrt{2}/3$ (B) $a^2 \cdot \sqrt{2}/4$ (C) $a^2 \cdot \sqrt{3}/3$ (D) $a^2 \cdot \sqrt{3}/4$ **Question 8 :** Determine A such that the function f(x) intersects the point (2, 2):

$$f(x) = Ax^2 + x + 1$$

(A) A = 0 (B) A = -1 (C) A = -1/2 (D) A = -1/4

Question 9 : Find a point of intersection of the functions f(x) and g(x):

$$f(x) = 2x^{2} + 4$$

$$g(x) = 3x^{2} + 3$$
(A) (-1, -4) (B) (1, 4) (C) (-1, -6) (D) (1, 6)

Question 10 : Find the derivative f'(x) of this function:

$$f(x) = \pi^{\sin(x)}$$

(A) $f'(x) = \sin(x) \cdot \ln(\pi) \cdot \pi^{\sin(x)}$ (B) $f'(x) = \cos(x) \cdot \ln(\pi) \cdot \pi^{\sin(x)}$ (C) $f'(x) = \sin(x) \cdot \ln(\pi) \cdot \pi^{\cos(x)}$ (D) $f'(x) = \cos(x) \cdot \ln(\pi) \cdot \pi^{\cos(x)}$

Question 11 : Let H_n define the sum of reciprocals of all integers from 1 to n. Which one of the following identities is correct?

(A) $1 = n \cdot (H_{2n} - H_{2n-1})$	(B) $1 = n \cdot (H_{2n} - H_{2n-2})$
(C) $1 = 2n \cdot (H_{2n} - H_{2n-1})$	(D) $1 = 2n \cdot (H_{2n} - H_{2n-2})$

Question 12 : What is the value of φ such that this equation holds?:

$$(1+2+3+4)^2 = 1^2 + 2^2 + 3^2 + 4^2 + \varphi$$

(A) $\varphi = 15$ (B) $\varphi = 30$ (C) $\varphi = 50$ (D) $\varphi = 70$

Question 13 : What is the surface area of a kite with diagonals a and b?:

Question 14 : Let $\{x\}$ be the fractional part of x. Given the following graph, find the function f(x):

Question 15 : Let $\{x\}$ be the fractional part of x. Given the following graph, find the function f(x):

(A) f(x) =

Question 16 : Let $\{x\}$ be the fractional part of x and $\gamma = 0.577...$ a constant. Which function f(x) makes this equation true?:

$$\int_{1} f(x)dx = 1 - \gamma$$

$$\{x\}/x \qquad (B) f(x) = \{x^2\}/x$$

(C) $f(x) = \{x\}/x^2$ (D) $f(x) = \{x^2\}/x^2$

Question 17: The integer p is a twin prime if ...

(A) p + 1 or p - 1 is prime. (B) p + 2 or p - 2 is prime. (C) 2p + 1 or 2p - 1 is prime. (D) 2p + 2 or 2p - 2 is prime.

Question 18 : The integer p is a *Germain prime* if ...

(A) p + 1 is prime. (B) p + 2 is prime. (C) 2p + 1 is prime. (D) 2p + 2 is prime.

Question 19 : Let $\pi_{a,b}(x)$ be the number of primes $p \leq x$ for which ap+b is also prime. What is the value of $\pi_{1,2}(10)$?

(A) $\pi_{1,2}(10) = 2$ (B) $\pi_{1,2}(10) = 3$ (C) $\pi_{1,2}(10) = 4$ (D) $\pi_{1,2}(10) = 5$

Question 20 : How does this sequence of numbers continue?:

(A) 20 (B) 21 (C) 22 (D) 23

Question 21 : Let H_n define the sum of reciprocals of all integers from 1 to n. What is the numerical value of $H_{10} - H_7$?

(A) $H_{10} - H_7 = \frac{121}{360}$ (B) $H_{10} - H_7 = \frac{123}{360}$ (C) $H_{10} - H_7 = \frac{127}{360}$ (D) $H_{10} - H_7 = \frac{129}{360}$

Question 22 : The expression $(2 + \sqrt{3})^2 \cdot (2 - \sqrt{3})^2$ is equal to ...

(A) 1	(B) 2	(C) 3	(D) 6
-------	-------	-------	-------

Question 23 : Let $n! = 1 \cdot 2 \cdot ... \cdot 10$. Which inequality holds true for $\ln(10!)$?

(A) $9 \le \ln(10!) < 12$ (B) $12 \le \ln(10!) < 15$ (C) $15 \le \ln(10!) < 18$ (D) $18 \le \ln(10!) < 21$

Question 24 : Find the correct f(x) such that this equation holds true:

$$f'(x) = \frac{\cos(x) - 2\sin(x)/x}{x^2}$$

(A) $f(x) = \frac{\sin(x)}{x}$ (B) $f(x) = \frac{\cos(x)}{x}$ (C) $f(x) = \frac{\cos(x)}{x^2}$ (D) $f(x) = \frac{\sin(x)}{x^2}$

Question 25 : Determine the value of C:

(A) 1 (B) 2 (C) 3 (D) 4

$$C = A^{B} + B^{A} - C$$

 $B = A^{2} + 2^{A}$
 $A = 3^{2} - 2^{3}$

Question 26 : Determine the value of the following term:

(A) 0 (B) 1 (C)
$$\sqrt{2}/2$$
 (D) $\sqrt{3}/2$

Question 27 : You throw a dice (with the numbers 1 to 6) twice. What is the probability of never throwing the number 6?