International Youth Math Challenge

Qualification Round 2021-Solution

Problem A

$a_{7}=37, a_{n}=\sum_{n=2}^{n+1} k=\frac{n(n+3)}{2}$
$b_{7}=20160, b_{n}=\frac{(n+1)!}{2}$

Problem B

$x_{1}=0$
$x_{2}=\frac{1}{2}+\sqrt{\frac{7}{12}}=\frac{3+\sqrt{21}}{6} \approx 1.26$
$x_{3}=\frac{1}{2}-\sqrt{\frac{7}{12}}=\frac{3-\sqrt{21}}{6} \approx-0.26$

Problem C

Using basic calculation rules: $(3+0) \cdot 1=3$

Problem D

It is $(n+2) \cdot \sin (n) \leq n+2$. Thus, it is sufficient to show $2^{n+1}>n+2$. We use induction:

1. Check $n=1: 4>3$
2. Assume $n=k$ holds: $2^{k+1}>k+2$
3. Show that $n=k+1$ holds: $2^{n+2}=2^{n+1} \cdot 2=2^{n+1}+2^{n+1}>k+2+1$

This is true as $n>-1 \Rightarrow 2^{n+1}>1$.

Problem E

From $\frac{x \cos (\alpha)}{l}=\frac{z}{y+l}$ and $\sin \alpha=\frac{l}{x}$ we get:

$$
z=(x \sin \alpha+y) \cdot \frac{\cos (\alpha)}{\sin (\alpha)}=x \cos (\alpha)+y \cot (\alpha)
$$

