International Youth Math Challenge

Qualification Round 2021

Problem A

Continue the two sequences of numbers below and find an equation to each of the sequences:

\mathbf{n}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Equation
a_{n}	2	5	9	14	20	27		
b_{n}	1	3	12	60	360	2520		

Problem B

Find all $x \in \mathbb{R}$ that solve this equation: $123=x \cdot(2 x \cdot(3 x-3)-2)+100+20+3$

Problem C

Determine the numerical value of the following expression without the use of a calculator:

$$
\left(\frac{\log _{10}\left(1000^{100}\right)}{100}+\sum_{n=1}^{100} \frac{\sin (\pi n)+1}{(-1)^{n}}\right) \cdot \sqrt{\prod_{m=1}^{1000} \frac{1}{\cos (\pi m)^{2}}}
$$

Problem D

Prove that $2^{n+1}>(n+2) \cdot \sin (n)$ for all positive integers n.

Problem E

The drawing below shows a right-angled triangle. A straight line crosses the triangle parallel to the line z and encloses an angle of α. The lengths x and y of the bottom and top line segments as well as the angle α are given. Find an equation for the length z.

Submission Information
To qualify for the next round, you have to solve at least three/four (under/over 18 years) problems correctly. Show your steps! Make sure to submit your solution until Sunday 17. October 2021 23:59 UTC +0 online! Further information and the submission form is available on the competition website: www.iymc.info

