

Final Round 2021

The final round exam was given in the form of an online exam. Each participant was given a subset of 20 questions in random order. This paper version is only available for training purposes.

Question 1 : What are the roots of this function?:

$$
f(x)=\frac{(1-x)(1+x)}{(2-x)(2+x)}
$$

(A) $\{0,2\}$
(B) $\{-1,1\}$
(C) $\{0,-1\}$
(D) $\{-2,2\}$

Question 2: What is the value of the function $g(x)$ for $x=0$:

$$
g(x)=x^{1+x}+e^{x}-x^{2}-\pi^{x}
$$

(A) 0
(B) 1
(C) 2
(D) π

Question 3 : Let $x=2, y=4$ and $z=8$. What is the numerical value of this fraction?:

$$
\frac{x^{y}+y^{x}}{x \cdot y \cdot z}
$$

(A) 0.5
(B) 1
(C) 1.5
(D) 2

Question 4: How does this sequence of numbers continue?: $4,10,28,82, \ldots$
(A) 121
(B) 228
(C) 235
(D) 244

Question 5: What is the value of this limit?:

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}
$$

(A) -1
(B) 0
(C) 1
(D) e

Question 6 : The integer a is called a quadratic residue modulo n if an integer b exists such that ...
(A) $b^{2} \equiv a \bmod n^{2}$
(B) $b \equiv a \bmod n^{2}$
(C) $b \equiv a^{2} \bmod n$
(D) $b^{2} \equiv a \bmod n$

Question 7 : The n-th Fermat number has the form ...
(A) $2^{n}+1$
(B) $2^{2^{n}}+1$
(C) $2^{n}-1$
(D) $2^{2^{n}}-1$

Question 8 : Find the smallest integer $n>1$ that is a square and a cube:
(A) 36
(B) 49
(C) 64
(D) 81

Question 9 : Which formula calculates the sum of the first n odd numbers?:

$$
1+3+5+\ldots+(2 n-1)
$$

(A) n^{2}
(B) $2 n^{2}-1$
(C) $n^{2}+n-1$
(D) $2 n^{2}+n-2$

Question 10 : Which x solves this equation?:

$$
x^{2}-4 x+4=-4+4 x-x^{2}
$$

(A) 0
(B) 1
(C) $\sqrt{2}$
(D) 2

Question 11: How can you express $\tan \alpha$ with $\cos \alpha$?
(A) $\tan \alpha= \pm \sqrt{1-\cos ^{2} \alpha} / \cos \alpha$
(B) $\tan \alpha= \pm \sqrt{1-\cos ^{2} \alpha} / \cos ^{2} \alpha$
(C) $\tan \alpha= \pm \sqrt{1+\cos ^{2} \alpha} / \cos \alpha$
(D) $\tan \alpha= \pm \sqrt{1+\cos ^{2} \alpha} / \cos ^{2} \alpha$

Question 12 : Find the smallest value of the function $f(x)=2^{x}+|x+1|$ for $x \in \mathbb{R}$:
(A) 0.25
(B) 0.5
(C) 0.75
(D) 1

Question 13 : Solve this inequality for $x \in \mathbb{R}$:

$$
\frac{3 x-3}{3}>\frac{2 x+14}{4}
$$

(A) $x>3$
(B) $x>5$
(C) $x>7$
(D) $x>9$

Question 14: Find the x that solves this equation:

$$
\sin ^{2} x-\cos ^{2} x=\frac{1}{2}
$$

(A) $x=\pi / 2$
(B) $x=\pi / 3$
(C) $x=\pi / 6$
(D) $x=\pi / 12$

Question 15 : Simplify the following fraction:

$$
\frac{155551}{1551}
$$

(A) $\frac{10101}{101}$
(B) $\frac{13131}{131}$
(C) $\frac{14141}{141}$
(D) $\frac{15151}{151}$

Question 16 : You throw three dice at the same time. What is the probability of getting the numbers 1,2 , and 3 ?
(A) $1 / 6$
(B) $1 / 36$
(C) $1 / 64$
(D) $1 / 72$

Question 17: What is the value of this expression?:

$$
\frac{\sin (\pi)+\cos (\pi)+\tan (\pi)}{\sin (-\pi)+\cos (-\pi)+\tan (-\pi)}
$$

(A) -1
(B) 0
(C) $1 / 2$
(D) 1

Question 18 : The volume of a pyramid with base area B and height h is equal to ...
(A) $B h / 3$
(B) $B h / 2$
(C) $2 B h / 3$
(D) $B h$

Question 19 : What is the numerical value of this sum?:

$$
\sum_{n=1}^{5} \frac{n+n^{2}}{n}
$$

(A) 15
(B) 20
(C) 25
(D) 30

Question 20 : Find the derivative $f^{\prime}(x)$ of this function:

$$
f(x)=x \cdot \ln \left(\frac{1}{x}\right)
$$

(A) $\ln \left(\frac{1}{x}\right)-x$
(B) $\ln (x)-x$
(C) $\ln \left(\frac{1}{x}\right)-1$
(D) $\ln (x)-1$

Question 21 : Select the number that has exactly eight digits:
(A) $(10)^{5}$
(B) $(20)^{5}$
(C) $(30)^{5}$
(D) $(40)^{5}$

Question 22 : Which one of the following numbers is a perfect square?
(A) 12021
(B) 12121
(C) 12221
(D) 12321

Question 23 : Which number does not fit into this sequence: 14, 21, 28, 31, 35, 42, ...
(A) 21
(B) 28
(C) 31
(D) 35

Question 24 : Find the function $f(x)$ with this graph:

(A) $f(x)=x^{3} / 10+\sin (10 x)$
(B) $f(x)=x^{3} / 10+\cos (10 x)$
(C) $f(x)=x^{3} / 10-\sin (10 x)$
(D) $f(x)=x^{3} / 10-\cos (10 x)$

Question 25 : The trapezium below has the sides a, b, c, d, and height h. What is the surface area of this trapezium?

(A) $\frac{1}{2} \cdot(a+b) \cdot h$
(B) $\frac{1}{2} \cdot(a+c) \cdot h$
(C) $\frac{1}{2} \cdot(b+c) \cdot h$
(D) $\frac{1}{2} \cdot(b+d) \cdot h$

Question 26 : What is the value of this sum?:

$$
0.1+(0.1)^{2}+(0.1)^{3}+(0.1)^{4}+(0.1)^{5}
$$

(A) 0.110111
(B) 0.111011
(C) 0.111101
(D) 0.111110

