International Youth Math Challenge

Qualification Round 2020

Problem A

Find the roots of the function $f(x)=\left(2^{x}-1\right) \cdot\left(x^{2}+2 x-3\right)$ with $x \in \mathbb{R}$.

Problem B

Show that $3 \cdot 4^{n}+51$ is divisible by 3 and 9 for all positive integers n.

Problem C

Determine the numerical value of the following expression without the use of a calculator:

$$
\sqrt{\sin \left(\frac{\pi+\log _{2}\left(\sqrt{2^{\pi} \cdot 2^{\pi}}\right)}{2^{5}-2^{4}-2^{3}}\right) \cdot \sqrt[3]{\frac{2^{4-1}}{2^{3 / 2}}}+\log _{2}\left(\log _{3}\left(9^{15}\right)+\pi^{1+(-1)^{17}}+1\right)+\frac{(-1)^{5}+(-1)^{27}}{(-1)^{766}}}
$$

Problem D

Prove that the inequality $|\cos (x)| \geq 1-\sin ^{2}(x)$ holds true for all $x \in \mathbb{R}$.

Problem E

The white square in the drawing below is located in the centre of the grey rectangle and has a surface area of A. The width of the rectangle is twice the width a of the square. What is the surface of the grey area (without the white square)?

Submission Information

To qualify for the next round, you have to solve at least three/four (under/over 18 years) problems correctly. Show your steps! Make sure to submit your solution until Sunday 11. October 2020 23:59 UTC +0 online! Further information and the submission form is available on the competition website: www.iymc.info

