

Final Round 2020

The final round exam was given in the form of an online exam. Each participant was given a subset of 30 questions in random order. This paper version is only available for training purposes.

Question 1 : What are the roots of this function?:

(A)
$$\{0,1\}$$
 (B) $\{0,-1\}$ (C) $\{1\}$ (D) $\{-1\}$

Question 2 : Let a = 5, b = 10 and c = 15. What is the numerical value of this fraction:

$\frac{6a+3c}{a+2b}$			
(A) 2	(B) 3	(C) 4	(D) 5
estion $3 \cdot H_{0}$	y does this sequence of	f numbers continue?:	4 24 124 624

(A) 1224	(B) 2224	(C) 2624	(D) 3124
----------	----------	----------	----------

Question 4 : What is the value of this limit?:

(A) 0 (B)
$$\frac{1}{2}$$
 (C) 1 (D) ∞

Question 5 : Determine the value of the following term:

 $\sin(2\pi) + \cos(6\pi) + \tan(8\pi)$

(A) 1 (B) $\frac{\sqrt{2}}{2}$ (C) 0 (D) -1

Question 6 : The term $\cos(2\alpha)$ can also be written as ...

Question 7 : A circle with circumference π is placed in the centre of a coordinate system (see below). A horizontal line is placed at height h. Determine the distance x between the y-axis and the circle.

(A)
$$x = \sqrt{\frac{1}{2} - h^2}$$
 (B) $x = \sqrt{\frac{1}{4} - h^2}$ (C) $x = \sqrt{\frac{1}{2\pi} - h^2}$ (D) $x = \sqrt{\frac{1}{4\pi} - h^2}$

Question 8 : The surface area of a sphere with radius r is equal to ...

(A) $2\pi r^2$ (B) $4\pi r^2$ (C) $2\pi r^2/3$ (D) $4\pi r^2/3$

Question 9 : Determine the value of x from these three equations:

(A)
$$x = -1/2$$
 (B) $x = 0$
 $2x + y + z = 0$
 $x + 2y + z = 1$
 $x + y + 2z = 1$
(C) $x = 1/2$ (D) $x = 1$

Question 10 : What is the value of p?:

(A) 15 (B) 17 (C) 19 (D) 21
$$n = 1 + 2 + 3$$

 $m = n + 2n + 3n$
 $p = \frac{n + m}{2}$

Question 11: Find the smallest k such that the following inequality holds true:

$$2^k + 1000 < 3^k + 100 < 4^k$$

(A) 5 (B) 6 (C) 7 (D) 8

Question 12 : Find the derivative f'(x) of the function $f(x) = \sin\left(\frac{1}{x}\right)$.

(A) $f'(x) = \cos(\pi - \frac{1}{x})/x^2$ (B) $f'(x) = \cos(\frac{1}{x})/x^2$ (C) $f'(x) = \sin(\pi - \frac{1}{x})/x^2$ (D) $f'(x) = \sin(\frac{1}{x})/x^2$

Question 13 : Find the function f(x) with this graph:

Question 14: Which equation corresponds to this graph?:

Question 15 : What is the value of this infinite sum?:

Question 16 : What is the correct value for ω such that $\sin(\omega x)$ has a period of 3?

(A)
$$\omega = \frac{1}{6}\pi$$
 (B) $\omega = \frac{1}{3}\pi$ (C) $\omega = \frac{2}{3}\pi$ (D) $\omega = \frac{2}{5}\pi$

Question 17: How does the following term behave for $n \to \infty$?:

$$\left(\sum_{k=1}^{n} \frac{1}{k}\right) - \ln(n)$$

(A) Goes to ∞

(C) Goes to a positive constant

(D) Goes to a negative constant

Question 18 : Find the correct f(x) such that this equation holds true:

(B) Goes to $-\infty$

$$\frac{d}{dx}f(x) = \frac{x}{1+x^2}$$

(A)
$$\frac{1}{2}\ln(1+x^2)$$
 (B) $\ln(1+x^2)$ (C) $\frac{x}{2}\ln(1+x^2)$ (D) $x \cdot \ln(1+x^2)$

Question 19 : Determine the value of a_3 in the following expansion:

$$(1+2x)^8 = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_8x^8$$

$$(A) 248 (B) 348 (C) 448 (D) 548$$

Question 20 : Let F_n be the *n*-th Fibonacci number. Which one of the following identities is true?

- (A) $F_{2n} = F_n^2 + F_{n+2}^2$ (B) $F_{2n+1} = F_n^2 + F_{n+2}^2$
- (C) $F_{2n} = F_n^2 + F_{n+1}^2$ (D) $F_{2n+1} = F_n^2 + F_{n+1}^2$

Question 21 : Determine the 4th derivative of the function $f(x) = \cos^2(x)$.

(A) $4\sin^2(x) - 4\cos^2(x)$ (B) $4\cos^2(x) - 4\sin^2(x)$ (C) $8\sin^2(x) - 8\cos^2(x)$ (D) $8\cos^2(x) - 8\sin^2(x)$

Question 22: The *iij* prime number theorem*j*/*ij* states that the number of primes less than or equal to N is asymptotically equal to ...

(A) $\ln(N)/N$ (B) $N/\ln(N)$ (C) $N \cdot \ln(N)$ (D) $N \cdot \ln(N) + N$

Question 23 : Which one of the following statements holds true if and only if n is a prime number?

(A)
$$n|(n-1)! + 1$$
 (B) $n|(n-1)! - 1$ (C) $n|(n+1)! + 1$ (D) $n|(n+1)! - 1$

Question 24 : Which one is the correct sequence of the jijharmonic numbers;/ij?

(A) $1, \frac{1}{2}, \frac{1}{3}, 1$	$\frac{1}{4}, \dots$	(B) $1, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \dots$
(C) $1, \frac{1}{2}, \frac{5}{6},$	$\frac{10}{12}, \dots$	(D) $1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \dots$

Question 25: Which term is equal to the following infinite sum for |x| < 1?:

$$1 + 2x + 3x^2 + 4x^3 + 5x^4 + \dots$$

(A) $\frac{1}{1-x}$ (B) $\frac{x}{1-x}$ (C) $\frac{1}{(1-x)^2}$ (D) $\frac{x}{(1-x)^2}$

Question 26 : Which one of the following series is equal to $\ln(1+x)$?

(A) $x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5} + \dots$	(B) $x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots$
(C) $x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \dots$	(D) $x - \frac{x^2}{2!} + \frac{x^3}{3!} - \frac{x^4}{4!} + \frac{x^5}{5!} - \dots$

Question 27 : A triangle is placed into a square with sides of length a as seen below. What is the length x of one of the sides of the triangle?

(A)
$$x = \sqrt{2}a/2$$
 (B) $x = \sqrt{3}a/2$ (C) $x = \sqrt{4}a/2$ (D) $x = \sqrt{5}a/2$

Question 28 : You throw two dice with six sides each at the same time. What is the probability of getting a total sum of 4?

(A) $\approx 5\%$ (B) $\approx 8\%$ (C) $\approx 12\%$ (D) $\approx 16\%$

Question 29 : Every positive integer can be written as the sum of at least ...

- (A) two integer squares (B) three integer squares
- (C) four integer squares (D) five integer squares

Question 30: The two functions $f(x) = 1 - \sin^2(\pi x)$ and $g(x) = \cos^2(x^2 - \pi^2)$ have an intersection point for ...

(A)
$$x = \frac{\pi}{2}(1+\sqrt{4})$$
 (B) $x = \frac{\pi^2}{2}(1+\sqrt{4})$ (C) $x = \frac{\pi}{2}(1+\sqrt{5})$ (D) $x = \frac{\pi^2}{2}(1+\sqrt{5})$

Question 31 : What is the last digit of this number?:

$$(11^8 \cdot 19 \cdot 23^2)^5$$

(A) 1 (B) 3 (C) 7 (D) 9

Question 32 : Let A and B be two sets of real numbers. Which one of the following identities is true?

(A) $A = (A \cap \emptyset) \cap (A \cup B)$	(B) $A = (A \cap \emptyset) \cup (A \cup B)$
(C) $A = (A \cup \emptyset) \cap (A \cup B)$	(D) $A = (A \cup \emptyset) \cup (A \cup B)$

Question 33 : Find the numerical value of this expression:

$$1 - \log_3\left(\prod_{k=1}^{100} \frac{1}{27^k}\right)$$

(A) 10100	(B) 10101	(C) 15150	(D) 15151
-----------	-----------	-----------	-----------

Question 34 : The expression $\sqrt{6+2\sqrt{5}}$ is equal to ...

(A)
$$1 + \sqrt{5}$$
 (B) $1 + 2\sqrt{5}$ (C) $\sqrt{3} + \sqrt{5}$ (D) $\sqrt{3} + 2\sqrt{5}$

Question 35 : Which inequality holds for this number?:

(A)
$$1 \le x < 2$$
 (B) $2 \le x < 3$ (C) $3 \le x < 4$ (D) $4 \le x < 5$

Question 36 : Let a, b, c be the solutions to this equation:

$$0 = x^3 - (2 + 2^2 + 2^3)x^2 + (2^3 + 2^4 + 2^5)x - 2^6$$

What is the value of $a \cdot b \cdot c$?

(A)
$$2^4$$
 (B) 2^6 (C) 2^8 (D) 2^{10}