IYMC Qualification Round

Viet Nam - Bui Phuong Tra - 17/05/2003 (Under 18)

Problem A

We have:

$\left(\sqrt{x^{3}}-\sqrt{x}\right)^{2} \geq 0(x \geq 0)$
$\leftrightarrow x^{3}+x \geq 2 x^{2}$
$\leftrightarrow-x^{3} \leq-2 x^{2}+x$
$\leftrightarrow x+x^{2}-x^{3} \leq x+x^{2}-2 x^{2}+x=-x^{2}+2 x=-(x-1)^{2}+1 \leq 1$
(because $-(x-1)^{2} \leq 0$ for all $x \in R$)
$\leftrightarrow f(x) \leq 1, "="$ when $x=1$
The maximum value of the function $f(x)$ is 1 , which occurs when $x=1$

Problem B

$$
\begin{aligned}
& 1 n^{3}+2 n+3 n^{2} \\
& =n\left(n^{2}+3 n+2\right) \\
& =n\left(n^{2}+n+2 n+2\right) \\
& =n[n(n+1)+2(n+1)] \\
& =n(n+1)(n+2)
\end{aligned}
$$

We have: $A=n(n+1)(n+2)$

To prove that A is divisible by 2 :

* If n is an odd positive integer: $(n+1)$ will be an even positive integer
$\rightarrow \mathrm{A}$ is divisible by 2.
* If n is an even positive integer: n and ($\mathrm{n}+2$) will be even positive integers $\rightarrow \mathrm{A}$ is divisible by 2 .

To prove that A is divisible by 3:
*If positive integer n is divisible by $3 \rightarrow \mathrm{~A}$ is divisible by 3 .
*When positive integer n is divided by 3 , the remainder is $1 \rightarrow(\mathrm{n}+2)$ is divisible by $3 \rightarrow \mathrm{~A}$ is divisible by 3 .
*When positive integer n is divided by 3 , the remainder is $2 \rightarrow(\mathrm{n}+1)$ is divisible by $3 \rightarrow \mathrm{~A}$ is divisible by 3 .

In conclusion: A always includes at least one number divisible by 2 and one number divisible by $3 \rightarrow \mathrm{~A}$ is divisible by 2 and 3 .

Or we can say that: Because $n, n+1, n+2$ are three consecutive positive numbers, and there are always one number divisible by 3 and at least one number divisible by 2 among three positive consecutive number (Pigeonhole Principle - Dirichlet). Therefore, A is divisible by 2 and 3.

Problem C

$\sin \left(x+\frac{\pi^{3}+2 \sqrt{\pi^{6}}}{\pi^{2}+\pi^{2}}+\pi^{\pi^{0}}\right)=\cos \left(x+\frac{(-1)^{16}}{2}-\frac{\log _{2}(\sqrt{8})}{3}\right)$
We have:
$\pi^{0}=1 \rightarrow \pi^{\pi^{0}}=\pi^{1}$
$\frac{(-1)^{16}}{2}=\frac{1}{2}$
$\log _{2}(\sqrt{8})=\frac{1}{2} \log _{2} 8=\frac{1}{2} \log _{2} 2^{3}=\frac{3}{2} \rightarrow \log _{2}(\sqrt{8})=\frac{3}{2}$
Therefore:
(1) $\leftrightarrow \sin \left(x+\frac{\pi^{3}+2 \pi^{\frac{6}{2}}}{2 \pi^{2}}+\pi^{1}\right)=\cos \left(x+\frac{1}{2}-\frac{3}{2} \times \frac{1}{3}\right)$
$\leftrightarrow \sin \left(x+\frac{3 \pi^{3}}{2 \pi^{2}}+\pi\right)=\cos (x)$
$\leftrightarrow \sin \left(x+\frac{3}{2} \pi+\pi\right)=\cos (x)$
$\leftrightarrow \sin \left(x+\frac{5}{2} \pi\right)=\sin \left(\frac{\pi}{2}-x\right)$
$\leftrightarrow \sin \left(x+\frac{\pi}{2}\right)=\sin \left(\frac{\pi}{2}-x\right)$ (because $\left.\sin (x)=\sin (x+2 \pi)\right)$
$\rightarrow\left\{\begin{array}{c}x+\frac{\pi}{2}=\frac{\pi}{2}-x+k 2 \pi(k \text { is an integer }) \\ x+\frac{\pi}{2}=\pi-\left(\frac{\pi}{2}-x\right)+k 2 \pi\end{array}\right.$
$\rightarrow\left\{\begin{array}{c}2 x=k 2 \pi \\ x=x+k 2 \pi(\text { true for } \forall x)\end{array}\right.$
\rightarrow The equation is true for all $x \in R$
In conclusion, 2 possible values of x can be $\pi(\mathrm{rad})$ and $2 \pi(\mathrm{rad})$.

Problem D

$\alpha+\beta+\gamma=1$ (1)
$\beta+\gamma+\beta=1$ (2)
$\gamma+\beta+\gamma=1$ (3)
By adding (2) to (3) we have:
$3(\beta+\gamma)=2$
$\rightarrow \beta+\gamma=\frac{2}{3}$ (4)
From (4) and (1), we have:
$\alpha+\frac{2}{3}=1$
$\rightarrow \alpha=1-\frac{2}{3}=\frac{1}{3}$
In conclusion, $\alpha=\frac{1}{3}$.

Problem E

R is the radius of the circle.
Square ABCD is inside the circle.
We have $\mathrm{AC}=\mathrm{BD}=2 \mathrm{R}=20 \mathrm{~A}=20 \mathrm{~B}=20 \mathrm{C}=20 \mathrm{D}$
The surface area of the circle is:
$\pi R^{2}=1\left(m^{2}\right) \rightarrow R^{2}=\frac{1}{\pi}\left(m^{2}\right) \rightarrow R=O A=O B=O C=O D=\sqrt{\frac{1}{\pi}}(m)$
The square is divided into four equal parts.
The surface area of each small square part: $\frac{R^{2}}{2}\left(=\frac{O A . O D}{2}\right)\left(\mathrm{m}^{2}\right)$
The surface area of the square ABCD is: $4 \times \frac{R^{2}}{2}=2 R^{2}=\frac{2}{\pi}\left(m^{2}\right)$

