Solutions to IYMC Qualifying Round 2018

Richell Isaiah S. Flores

September 29, 2018

Problem A. Find the roots of $f(x)=\left(e^{x}-e^{\pi}\right)\left(e^{x}-\pi\right)$ where e denotes Euler's number. Solution. The roots of the function f could be found by equating it to 0 .

$$
\begin{array}{rll}
\left(e^{x}-e^{\pi}\right)\left(e^{x}-\pi\right) & =0 \\
\left(e^{x}-e^{\pi}\right)=0 & \| & \left(e^{x}-\pi\right)=0 \\
e^{x}=e^{\pi} & \| & e^{x}=\pi \\
x=\pi & \| & x=\ln \pi
\end{array}
$$

So the roots of f are $x=\pi$ and $x=\ln \pi$

Problem B. Show that $n^{4}-n^{3}+n^{2}-n$ is divisible by 2 for all positive integers n.
Proof. To show that the expression is divisible by 2 (that is even), it must be proven that the expression is even for $n=1$ then to both even and odd values of n. An expression is even if it can be expressed as $2 m$ where $m \in \mathbb{N}$.

$$
\begin{aligned}
n^{4}-n^{3}+n^{2}-n & =n^{4}+n^{2}-n^{3}-n \\
& =n^{2}\left(n^{2}+1\right)-n\left(n^{2}+1\right) \\
& =\left(n^{2}+1\right)\left(n^{2}-n\right) \\
& =n\left(n^{2}+1\right)(n-1)
\end{aligned}
$$

Case 1: For $n=1$.

$$
\begin{aligned}
n\left(n^{2}+1\right)(n-1) & =1\left(1^{2}+1\right)(1-1) \\
& =1(2)(0) \\
& =0
\end{aligned}
$$

Zero is divisible by 2 .
Case 2: For $n=2 k($ for all $k \in \mathbb{N})$.

$$
\begin{aligned}
n\left(n^{2}+1\right)(n-1) & =2 k\left((2 k)^{2}+1\right)(2 k-1) \\
& =2 k\left(4 k^{2}+1\right)(2 k-1) \\
& =2\left[k\left(4 k^{2}+1\right)(2 k-1)\right]
\end{aligned}
$$

Since $k \in \mathbb{N},\left(4 k^{2}+1\right) \in \mathbb{N}$. Also, the least integral solution for $(2 k-1)$ to be positive is 1 , so $(2 k-1) \in \mathbb{N} \forall k \in \mathbb{N}$. Thus $k\left(4 k^{2}+1\right)(2 k-1) \in \mathbb{N}$. Therefore, for $n \in 2 k$ for all $k \in \mathbb{N}, n\left(n^{2}+1\right)(n-1)$ could be expressed as $2 m$ where $m=k\left(4 k^{2}+1\right)(2 k-1)$.

Case 3: For $n=2 k+1$ (for all $k \in \mathbb{N}$).

$$
\begin{aligned}
n\left(n^{2}+1\right)(n-1) & =(2 k+1)\left((2 k+1)^{2}+1\right)((2 k+1)-1) \\
& =(2 k+1)\left((2 k+1)^{2}+1\right)(2 k) \\
& =2\left[k(2 k+1)\left((2 k+1)^{2}+1\right)\right]
\end{aligned}
$$

Since $k \in \mathbb{N},(2 k+1) \in \mathbb{N}$, so $\left((2 k+1)^{2}+1\right) \in \mathbb{N}$ as well. Thus $k(2 k+1)\left((2 k+1)^{2}+1\right) \in$ \mathbb{N}. Therefore, for $n \in 2 k+1$ for all $k \in \mathbb{N}, n\left(n^{2}+1\right)(n-1)$ could be expressed as $2 m$ where $m=k(2 k+1)\left((2 k+1)^{2}+1\right)$.

Since $n\left(n^{2}+1\right)(n-1)$ is even for $n=1$, even $(n=2 k)$, and odd $(n=2 k+1)$ positive integers, $n^{4}-n^{3}+n^{2}-n$ is also even; therefore, divisible by 2 for all positive integer n

Problem C. You have given a sphere with a volume of π^{3}. What is the radius of this sphere? Explain whether or not it is possible to build such a sphere in reality?

Solution. Solving for the radius r,

$$
\begin{aligned}
\pi^{3} & =\frac{4 \pi}{3} r^{3} \\
3 \pi^{3} & =4 \pi r^{3} \\
r^{3} & =\frac{3 \pi^{3}}{4 \pi} \\
r & =\sqrt[3]{\frac{3 \pi^{2}}{4}}
\end{aligned}
$$

Since the radius of the sphere in question contains the number π, it will be impossible to create a physical object that has dimensions with incredible precision to contain the length π, let alone its cube root. Also, since π is a transcendental number, it is impossible to be constructed using Euclidean tools; thus impossible to be constructed in the real world.

Problem D. Find the numerical value of the following expression without the use of a calculator.

$$
\log _{2}\left(2^{2}+5 \cdot 2^{2} \cdot 3\right) \cdot\left(2 \log _{3} 2+\log _{3}\left(7-\frac{1}{4}\right)\right)+\frac{\left(\log _{2} 128-2\right)^{3}}{3+2}+(-1)^{32+\pi^{0}}
$$

Solution. Using laws of logarithms, the expression could be simplified.

$$
\begin{gathered}
\log _{2}\left(2^{2}+5 \cdot 2^{2} \cdot 3\right) \cdot\left(2 \log _{3} 2+\log _{3}\left(7-\frac{1}{4}\right)\right)+\frac{\left(\log _{2} 128-2\right)^{3}}{3+2}+(-1)^{32+\pi^{0}} \\
\log _{2}(4+60) \cdot\left(\log _{3} 4+\log _{3}\left(\frac{27}{4}\right)\right)+\frac{\left(\log _{2} 2^{7}-2\right)^{3}}{5}+(-1)^{32+1} \\
\log _{2}(64) \cdot\left(\log _{3} 4+\left(\log _{3} 27-\log _{3} 4\right)\right)+\frac{(7-2)^{3}}{5}+(-1)^{33} \\
\log _{2} 2^{6} \cdot\left(\log _{3} 3^{3}\right)+\frac{(5)^{3}}{5}+(-1) \\
6 \cdot 3+5^{2}-1 \\
18+25-1
\end{gathered}
$$

Problem E. A square has a side length a. A line intersects the square at a height of x and y. Find an expression for the surface area $A(x, y)$ below the line.

Solution. The region beneath the line can be generally described as a trapezoid with height a and bases of lengths x and y. So the area (1) given by the formula

$$
\begin{equation*}
A(x, y)=\frac{a(x+y)}{2} \tag{1}
\end{equation*}
$$

This equation is still valid since a is just a constant. Considering special cases, this equation for the area still holds true.

Case 1: When $x=y$, the region enclosed beneath the line is a rectangle. So the area of the rectangle A is given by $A=b h=a x=a y$. Plugging $x=y$ to (1) gives the following

$$
\begin{aligned}
A(x, x) & =\frac{a(x+x)}{2} \\
& =\frac{a(2 x)}{2} \\
& =a x
\end{aligned}
$$

which is equal to the area using the formula for area of a rectangle.

Case 2: When $x=y=a$, the region enclosed by the line is the entire square, so it is expected that the area is a^{2}. Plugging in the value for this case gives

$$
\begin{aligned}
A(a, a) & =\frac{a(a+a)}{2} \\
& =\frac{a(2 a)}{2} \\
& =a^{2}
\end{aligned}
$$

which equals the desired area of a square.
Case 3: When $x=0$ or $y=0$, the region formed is a triangle, so the area of the region is given by $A=\frac{b h}{2}=\frac{a x}{2}$ or $\frac{a y}{2}$. Without loss of generality, let $y=0$, so the area as given by (1) with this value is

$$
\begin{aligned}
A(x, 0) & =\frac{a(x+0)}{2} \\
& =\frac{a x}{2}
\end{aligned}
$$

which equals the area given by a triangle.

Case 4: When $x=y=0$, the expected area is 0 . Substituting to (1) gives

$$
\begin{aligned}
A(0,0) & =\frac{a(0+0)}{2} \\
& =0
\end{aligned}
$$

which corresponds with the expected area.
These cases verify that (1) will work as the area of the region below the line.

