

Final Round 2018

Important: Read all the information on this page carefully!

General Information

- Please read all questions carefully!
- This exam consists of 30 multiple-choice questions.
- To every question, there are four possible answers: A, B, C and D.
- Only one of the four answer is correct!
- Every correct answer gives you one point.
- There are no negative points for wrong answers.
- You have strictly 60 minutes to solve as many problems as possible.
- If you cannot answer a question: Skip it! The final round consists of more questions than we expect you to answer.
- Write your answers on the Your-Answers-page only (see next page)!
- Following notation is used for the questions:
- $x \in \mathbb{R}$ denotes a real number, $n \in \mathbb{N}$ denotes a positive integer.
$-f, g$ denote functions. (The domain and co-domain should follow from the context.)
- The "roots" of a function f are those x such that $f(x)=0$.
- $\pi=3.141 \ldots$ denotes the circle constant and $e=2.718 \ldots$ Euler's number.

- You are allowed to...

- use a pencil/pen for writing.
- use extra blank papers for personal notes.

- You are not allowed to...

- work more than 60 minutes on this exam.
- use electronic devices (e.g. internet, calculators).
- use any source of information (e.g. notes, books).
- receive help from your supervisor or other students.
- Cheating Policy: In addition to the presence and supervision of your supervisor during the examination we have various additional methods to detect cheating: This includes methods to detect time violations as well as to detect the usage of tools (e.g. internet) for cheating. Cheating will result in immediate disqualification!

Your Answers

Your Name:

Please write your answers on this page!

No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10
No. 11	No. 12	No. 13	No. 14	No. 15	No. 16	No. 17	No. 18	No. 19	No. 20
No. 21	No. 22	No. 23	No. 24	No. 25	No. 26	No. 27	No. 28	No. 29	No. 30

Please write A, B, C or D into the boxes to give your answers.

Question 1: What are the roots of the function $f(x)=x^{2}+a x-2 a^{2}$ with $a \in \mathbb{R}$?
(A) $\{a, 2 a\}$
(B) $\{-a, 2 a\}$
(C) $\{a,-2 a\}$
(D) $\{-a,-2 a\}$

Question 2: Find the point of intersection (x, y) of $f(x)=2 x-3$ and $g(x)=-x^{3}$.
(A) $(1,1)$
(B) $(-1,1)$
(C) $(1,-1)$
(D) $(-1,-1)$

Question 3 : Solve this equation for $x \in \mathbb{R}$:

$$
\frac{x-1}{2}-\frac{2 x-3}{4}-\frac{3 x-4}{5}=3
$$

(A) $x=\frac{39}{12}$
(B) $x=-\frac{39}{12}$
(C) $x=\frac{79}{24}$
(D) $x=-\frac{79}{24}$

Question 4: What is the value of $\cos (7 \pi / 6)$?
(A) $1 / 2$
(B) $-1 / 2$
(C) $\sqrt{3} / 2$
(D) $-\sqrt{3} / 2$

Question 5: Find the derivative $f^{\prime}(x)$ of the function $f(x)=x^{x}$.
(A) $f^{\prime}(x)=(\ln (x)+1) \cdot x^{x}$
(B) $f^{\prime}(x)=\ln (x+1) \cdot x^{x}$
(C) $f^{\prime}(x)=(\ln (x)+x) \cdot x^{x}$
(D) $f^{\prime}(x)=\ln \left(x+x^{x}\right) \cdot x^{x}$

Question 6 : Find the numerical value of this expression:

$$
\sin ^{2}\left(\frac{\pi}{2}\right) \frac{\pi^{2-\cos (2 \pi)}}{7+(-1)^{2}}+\cos ^{2}\left(\frac{\pi}{4}+\frac{\pi}{4}\right) \frac{\pi}{3^{2}-1}
$$

(A) π
(B) $\pi / 2$
(C) $\pi / 4$
(D) $\pi / 8$

Question 7: Find the value of this infinite sum: $\sum_{n=0}^{\infty} \frac{3^{n}}{4^{n}}$
(A) $1 / 3$
(B) $1 / 4$
(C) 3
(D) 4

Question 8 : Which one is the set of prime numbers?
(A) $\{n \in \mathbb{N}: 1|n \wedge n| n\}$
(B) $\{n \in \mathbb{N}: 1|n \wedge n| n \wedge n>1\}$
(C) $\{n \in \mathbb{N}:|\{t \in \mathbb{N}: t \mid n\}|=2\}$
(D) $\{n \in \mathbb{N}:|\{t \in \mathbb{N}: t \mid n \wedge t>1\}|=2\}$

Question 9 : How can you express $\sin (x)$ with $\cos (x)$?
(A) $\sin (x)=\cos (\pi / 2+x)$
(B) $\sin (x)=\cos (\pi / 2-x)$
(C) $\sin (x)=\cos (\pi+x)$
(D) $\sin (x)=\cos (\pi-x)$

Question 10 : Which number divides $n^{3}+5 n$ for all $n \in \mathbb{N}$?
(A) 4
(B) 5
(C) 6
(D) 7

Question 11 : Find the smallest value of the function $f(x)=x^{2}+2^{x^{2}}$ for $x \in \mathbb{R}$.
(A) 0
(B) $1 / 2$
(C) 1
(D) 2

Question 12 : Below you find an equilateral triangle with all sides having a length of 1. A straight line intersects a corner and the center of the triangle. Find the length L of this line:

(A) $L=1 / 2$
(B) $L=\sqrt{2} / 2$
(C) $L=3 / 2$
(D) $L=\sqrt{3} / 2$

Question 13 : Solve this inequality for $x \in \mathbb{R}$:

$$
\frac{5(9-x)}{3}+1<16
$$

(A) $x>0$
(B) $x>1$
(C) $x>3$
(D) $x>5$

Question 14 : Which equation is equal to $\cos (\alpha+\beta)$ with $\alpha, \beta \in \mathbb{R}$?
(A) $\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta)$
(B) $\sin (\alpha) \cos (\beta)-\cos (\alpha) \sin (\beta)$
(C) $\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta)$
(D) $\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta)$

Question 15: What is the last digit of $11^{5} \cdot 17^{3} \cdot 33^{3}$?
(A) 1
(B) 2
(C) 3
(D) 5

Question 16 : Which number is also known as Golden ratio?
(A) $\frac{1+\sqrt{3}}{2}$
(B) $\frac{1-\sqrt{3}}{2}$
(C) $\frac{1+\sqrt{5}}{2}$
(D) $\frac{1-\sqrt{5}}{2}$

Question 17 : Find the value of x that is a solution to $\sqrt{2}=4 \sin (x) \cos (x)$.
(A) $x=\pi$
(B) $x=\pi / 2$
(C) $x=\pi / 4$
(D) $x=\pi / 8$

Question 18 : Find the correct inequality for $a=\frac{1001}{1002}, b=\frac{1003}{1004}$ and $c=\frac{1002}{1003}$:
(A) $a<b<c$
(B) $a<c<b$
(C) $c<a<b$
(D) $c<b<a$

Question 19 : Find the correct inequality with $x=\pi^{\pi^{2}}$:
(A) $27^{2} \leq x \leq 3^{6}$
(B) $3^{6} \leq x \leq 3^{9}$
(C) $3^{6} \leq x \leq 9^{6}$
(D) $27^{2} \leq x \leq 3^{9}$

Question 20 : What are the roots $x \in \mathbb{R}$ of the function $f(x)=\frac{x^{2}-1}{x+2}$?
(A) $\{1,-1\}$
(B) $\{1,-\sqrt{2}\}$
(C) $\{-1, \sqrt{2}\}$
(D) $\{-1,-\sqrt{2}\}$

Question 21 : Find the solutions $x \in \mathbb{R}$ to this equation:

$$
\pi \sin ^{2}\left(x^{3}\right)-x^{2} \cos ^{2}\left(x^{3}\right)=x^{2} \sin ^{2}\left(x^{3}\right)-\pi \cos ^{2}\left(x^{3}\right)
$$

(A) $\{1,-1\}$
(B) $\{\sqrt{\pi},-\sqrt{\pi}\}$
(C) $\{\pi,-\pi\}$
(D) $\left\{\pi^{2},-\pi^{2}\right\}$

Question 22 : Find an expression for the product of the first k odd numbers:

$$
P=1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 k-1)
$$

(A) $P=\frac{(2 k)!}{2^{k}}$
(B) $P=\frac{(2 k)!}{2^{k} k!}$
(C) $P=\frac{(2 k+1)!}{2^{k}}$
(D) $P=\frac{(2 k+1)!}{2^{k} k!}$

Question 23: Find the sum of the first 100 numbers:

$$
S=1+2+3+\ldots+99+100
$$

(A) 4950
(B) 5050
(C) 5150
(D) 5380

Question 24 : A semicircle with radius R is connected to a square (see below). Find the perimeter of this shape (length of bold line):

(A) $(3+\pi) R$
(B) $(3+2 \pi) R$
(C) $(6+\pi) R$
(D) $(6+2 \pi) R$

Question 25 : Which equation is true for any triangle with angles α, β, γ and sides a, b, c ?
(A) $c^{2}=a^{2}+b^{2}+2 a b \sin \gamma$
(B) $c^{2}=a^{2}+b^{2}+2 a b \cos \gamma$
(C) $c^{2}=a^{2}+b^{2}-2 a b \sin \gamma$
(D) $c^{2}=a^{2}+b^{2}-2 a b \cos \gamma$

Question 26 : What is the value of this division: $\frac{20182018}{2018}$
(A) 101
(B) 1001
(C) 10001
(D) 100001

Question 27 : What is the value of $\frac{2 x-3}{x-1}$ for $x \rightarrow \infty$?
(A) 0
(B) 1
(C) 2
(D) 3

Question 28 : How many last digits of 17 ! are zeros?
(A) 2
(B) 3
(C) 4
(D) 5

Question 29 : What is the value of $S=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$?
(A) $1 / 2$
(B) $\pi / 3$
(C) $\pi^{2} / 6$
(D) $\pi^{3} / 9$

Question 30 : How likely have at least two of 23 students birthday on the same day?
$(\mathrm{A}) \approx 10 \%$
(B) $\approx 30 \%$
(C) $\approx 50 \%$
(D) $\approx 70 \%$

