International Youth Math Challenge

Training and Problems

www.iymc.info

Version: V.08.2020

Problem: 2018-QR-A

Problem

Find the roots of

$$
f(x)=\left(e^{x}-e^{\pi}\right)\left(e^{x}-\pi\right)
$$

where e denotes Euler's number.

Problem: 2019-QR-A

Problem

Find the maximum value of the function

$$
f(x)=x+x^{2}-x^{3}
$$

for $x \geq 0$.

Problem: 2018-QR-B

Problem

Show that $n^{4}-n^{3}+n^{2}-n$ is divisible by 2 for all positive integers n.

Problem: 2019-QR-D

Problem

You have given following three equations below with $\alpha, \beta, \gamma \in \mathbb{R}$. What is the value of α ?

$$
\begin{aligned}
& \alpha+\beta+\gamma=1 \\
& \beta+\gamma+\beta=1 \\
& \gamma+\beta+\gamma=1
\end{aligned}
$$

Problem: 2019-QR-E

Problem

The circle in the drawing below has a surface area of $A_{1}=1 m^{2}$. Determine the surface area A_{2} of the square that was placed inside of the circle.

Problem: 2019-PF-A1

Problem

Find the area enclosed by these three functions:

$$
f(x)=1, \quad g(x)=x+1, \quad h(x)=9-x
$$

Problem: 2019-PF-A2

Problem

Find the roots of this function:

$$
f(x)=3^{x} \cdot\left(\log _{2}(x)-3\right)^{5} \cdot e^{x^{2}-3 x}
$$

Problem: 2018-PF-A5

Problem

Find all x such that $\left|x^{2}-1\right|<2 x$.

Problem: 2019-PF-B2

Problem

Prove the following inequality between the harmonic, geometric, and arithmetic mean with $x, y \geq 0$:

$$
\frac{2}{\frac{1}{x}+\frac{1}{y}} \leq \sqrt{x y} \leq \frac{x+y}{2}
$$

Problem: 2019-PF-B4

Problem

Consider an equal-sided triangle connected to a square with side a (see drawing). A straight line from Q intersects the square at x and y. You have given x, find an equation for the intersection at $y(x)$.

Problem: 2018-PF-B1

Problem

Show that $2^{3 n}-1$ is divisible by 7 for all positive integers n.

Problem: 2018-PF-B3

Problem

Find the value of this infinite sum: $\sum_{n=0}^{\infty} \frac{2^{2 n}+2^{n}}{2^{3 n}}$.

Problem: 2018-PF-B4

Problem

Give a closed expression for the function $g(n)$ with the following behaviour:

$$
g(n)= \begin{cases}0, & n \text { even } \\ n, & n \text { odd }\end{cases}
$$

Problem: 2018-PF-B6

Problem

The drawing below shows two squares with side a and b. A straight line intersects the squares at y and x. Calculate the gray area $A(a, b, x, y)$ between the squares and the line.

Problem: 2019-PF-C1

Problem

The sum of divisor function $\sigma(n)$ returns the sum of all divisors d of the number n :

$$
\sigma(n)=\sum_{d \mid n} d
$$

We denote N_{k} any number that fulfils the following condition:

$$
\sigma\left(N_{k}\right) \geq k \cdot N_{k}
$$

Find examples for N_{3}, N_{4}, N_{5} and prove that they fulfil this condition.

Problem: 2019-F-1

Problem

What are the roots of the function $f(x)=\frac{x^{2}-4 x+3}{2^{x}-4}$?
(A) $\{1,3\}$
(B) $\{1,4\}$
(C) $\{-1,3\}$
(D) $\{-1,4\}$

Problem: 2019-F-3

Problem

How does this sequence of numbers continue?:

$$
7,26,63,124, \ldots
$$

(A) 205
(B) 215
(C) 225
(D) 235

Problem: 2019-F-4

Problem

What is the value of $\sin \left(150^{\circ}\right)+\cos (4 \pi / 3) ?$
(A) $-1 / 2$
(B) 0
(C) $1 / 2$
(D) 1

Problem: 2019-F-5

Problem

Find the result of this division: $\frac{111111}{11}$

$\begin{array}{llll}\text { (A) } 10001 & \text { (B) } 10101 & \text { (C) } 10110 & \text { (D) } 11111\end{array}$

Problem: 2019-F-11

Problem

Find the function $f(x)$ with this graph:

(A) $f(x)=\sin \left(x^{2}\right)$
(B) $f(x)=\sin ^{2}(x)$
(C) $f(x)=\sin ^{2}\left(x^{2}\right)$
(D) $f(x)=\sin (1 / x)$

Problem: 2019-F-13

Problem

Determine the value of this alternating sum:

$$
\sum_{n=1}^{1550}(-1)^{n} \cdot n
$$

(A) 225
(B) 775
(C) 1549
(D) 1550

Problem: 2019-F-15

Problem

What are the roots of this function?

$$
f(x)=\pi^{3}-\left(\pi+\pi^{2}+\pi^{3}\right) x+\left(1+\pi+\pi^{2}\right) x^{2}-x^{3}
$$

(A) $\left\{1, \pi, \pi^{2}\right\}$
(B) $\left\{\pi, \pi^{2}, \pi^{3}\right\}$
(C) $\left\{-1, \pi, \pi^{2}\right\}$
(D) $\left\{-\pi, \pi^{2}, \pi^{3}\right\}$

Problem: 2019-F-17

Problem

For which n is $p_{n}=n^{2}-n+41$ not a prime number?

$$
\begin{array}{llll}
\text { (A) } 41 & \text { (B) } 13 & \text { (C) } 27 & \text { (D) } 60
\end{array}
$$

Problem: 2019-F-21

Problem

The binary representation of the decimal number 127 is ...
(A) 1111100
(B) 1111101
(C) 1111110
(D) 1111111

Problem: 2019-F-39

Problem

What is the probability to throw a dice six times without getting a six?

$$
(A) \approx 16 \% \quad(B) \approx 33 \% \quad(C) \approx 66 \% \quad(D) \approx 83 \%
$$

Problem: 2019-F-40

Problem

You have given a triangle with two sides of equal length. Determine the length of the third side given the circumference U to maximize the area of the triangle.
(A) $U / 2$
(B) $U / 3$
(C) $U / 4$
(D) $U / 5$

Problem: 2019-F-40

Problem

You have given a triangle with two sides of equal length. Determine the length of the third side given the circumference U to maximize the area of the triangle.
(A) $U / 2$
(B) $U / 3$
(C) $U / 4$
(D) $U / 5$

International Youth Math Challenge www.iymc.info

