International Youth Math Challenge Training and Problems

www.iymc.info

Version: V.08.2020

Find the roots of

$$f(x) = (e^x - e^\pi)(e^x - \pi)$$

where *e* denotes Euler's number.

Find the maximum value of the function

$$f(x) = x + x^2 - x^3$$

for $x \ge 0$.

Show that $n^4 - n^3 + n^2 - n$ is divisible by 2 for all positive integers *n*.

You have given following three equations below with $\alpha, \beta, \gamma \in \mathbb{R}$. What is the value of α ?

$$\begin{aligned} \alpha+\beta+\gamma &= 1\\ \beta+\gamma+\beta &= 1\\ \gamma+\beta+\gamma &= 1 \end{aligned}$$

The circle in the drawing below has a surface area of $A_1 = 1m^2$. Determine the surface area A_2 of the square that was placed inside of the circle.

Find the area enclosed by these three functions:

$$f(x) = 1$$
, $g(x) = x + 1$, $h(x) = 9 - x$

Find the roots of this function:

$$f(x) = 3^{x} \cdot (\log_{2}(x) - 3)^{5} \cdot e^{x^{2} - 3x}$$

Find all x such that $|x^2 - 1| < 2x$.

Prove the following inequality between the harmonic, geometric, and arithmetic mean with $x, y \ge 0$:

$$\frac{2}{\frac{1}{x}+\frac{1}{y}} \leq \sqrt{xy} \leq \frac{x+y}{2}$$

Problem: 2019-PF-B4

Problem

Consider an equal-sided triangle connected to a square with side *a* (see drawing). A straight line from Q intersects the square at *x* and *y*. You have given *x*, find an equation for the intersection at y(x).

Show that $2^{3n} - 1$ is divisible by 7 for all positive integers *n*.

Find the value of this infinite sum:

$$\sum_{n=0}^{\infty} \frac{2^{2n}+2^n}{2^{3n}}$$

n

Give a closed expression for the function g(n) with the following behaviour:

$$g(n) = \left\{egin{array}{cc} 0, & n ext{ even} \ n, & n ext{ odd} \end{array}
ight.$$

Problem: 2018-PF-B6

Problem

The drawing below shows two squares with side a and b. A straight line intersects the squares at y and x. Calculate the gray area A(a, b, x, y) between the squares and the line.

The sum of divisor function $\sigma(n)$ returns the sum of all divisors d of the number n:

$$\sigma(n) = \sum_{d|n} d$$

We denote N_k any number that fulfils the following condition:

$$\sigma(N_k) \geq k \cdot N_k$$

Find examples for N_3 , N_4 , N_5 and prove that they fulfil this condition.

What are the roots of the function $f(x) = \frac{x^2-4x+3}{2^x-4}$?

(A)
$$\{1,3\}$$
 (B) $\{1,4\}$ (C) $\{-1,3\}$ (D) $\{-1,4\}$

How does this sequence of numbers continue?:

 $7,\ 26,\ 63,\ 124,\ldots$

(A) 205 (B) 215 (C) 225 (D) 235

What is the value of $sin(150^\circ) + cos(4\pi/3)$?

Find the result of this division: $\frac{111111}{11}$ (A) 10001 (B) 10101 (C) 10110 (D) 11111

Problem: 2019-F-11

Problem

Find the function f(x) with this graph:

(A)
$$f(x) = \sin(x^2)$$
 (B) $f(x) = \sin^2(x)$
(C) $f(x) = \sin^2(x^2)$ (D) $f(x) = \sin(1/x)$

Determine the value of this alternating sum:

$$\sum_{n=1}^{1550} (-1)^n \cdot n$$

(A) 225 (B) 775 (C) 1549 (D) 1550

What are the roots of this function?

$$f(x) = \pi^3 - (\pi + \pi^2 + \pi^3)x + (1 + \pi + \pi^2)x^2 - x^3$$

(A)
$$\{1, \pi, \pi^2\}$$
 (B) $\{\pi, \pi^2, \pi^3\}$
(C) $\{-1, \pi, \pi^2\}$ (D) $\{-\pi, \pi^2, \pi^3\}$

For which *n* is $p_n = n^2 - n + 41$ not a prime number? (A) 41 (B) 13 (C) 27 (D) 60

The binary representation of the decimal number 127 is ... (A) 1111100 (B) 1111101 (C) 1111110 (D) 1111111

What is the probability to throw a dice six times without getting a six?

(A) $\approx 16\%$ (B) $\approx 33\%$ (C) $\approx 66\%$ (D) $\approx 83\%$

You have given a triangle with two sides of equal length. Determine the length of the third side given the circumference U to maximize the area of the triangle.

(A) U/2 (B) U/3 (C) U/4 (D) U/5

You have given a triangle with two sides of equal length. Determine the length of the third side given the circumference U to maximize the area of the triangle.

(A) U/2 (B) U/3 (C) U/4 (D) U/5

INTERNATIONAL YOUTH MATH CHALLENGE www.iymc.info