International Youth Math Challenge

Qualification Round 2023

Problem A

What are the roots of the function $f(x)=\left(\pi^{x}-\frac{1}{\pi}\right) \cdot x^{\pi} \cdot\left(\frac{1}{\pi^{2}}-\pi^{x}\right)$ with $x \in \mathbb{R}$?

Problem B

Show that $2^{n}-(-1)^{n}$ is divisible by 3 for all positive integers n.

Problem C

Determine the numerical value of the following expression without the use of a calculator:

$$
\log _{3}\left(\frac{\sin (2 \pi)}{\tan (\pi / 3)}+\sum_{n=0}^{10}\left(\frac{1+\sqrt{1+\sqrt{1}}}{1+\left(1^{-1}+1^{1-1}\right) \cdot \cos (\pi / 4)}-\frac{2^{4}-2^{3}}{(1+\sqrt{1})^{2}}\right)^{n}\right)
$$

Problem D

Let $\sigma(n)$ be the sum of all positive divisors of the integer n and let p be any prime number. Prove that $\sigma\left(p^{m}\right)=1+p \cdot \sigma\left(p^{m-1}\right)$ for all positive integers m.

Problem E

The drawing below shows an equilateral triangle with side length a. A vertical line of length b intersects the triangle (dotted line; $a \| b$). Find the area A of the enclosed triangle (grey area).

Submission Information

To qualify for the next round, you have to solve at least three/four (under/over 18 years) problems correctly. Show your steps! Make sure to submit your solution until Sunday 17. September 2023 23:59 UTC +0 online! Further information and the submission form is available on the competition website: www.iym..info

